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Abstract: The Szego projection of tube domains over irreducible symmetric cones is unbounded in 𝑳(𝟏+𝝐). Indeed, 

this is a consequence of the fact that the characteristic function of a disc is not a Fourier multiplier, a fundamental 

theorem proved by C. Fefferman in the 70's. The same problem, related to the Bergman projection, deserves a 

different approach. In this survey, based on joint work of the author with D. Bekolle, G. Garrigos, M. Peloso and 

F. Ricci, we give partial results on the range of 𝟏 + 𝝐 for which it is bounded. We also show that there are two 

equivalent problems, of independent interest. One is a generalization of Hardy inequality for holomorphic 

functions. The other one is the characterization of the boundary values of functions in the Bergman spaces in terms 

of an adapted Littlewood–Paley theory. This last point of view leads naturally to extend the study to spaces with 

mixed norm as well. 

Keywords: Whitney decomposition; Symmetric cone; Bergman projector; Littlewood – Paley; Hardy inequality.  

1.   INTRODUCTION 

For 𝑉 be an irreducible symmetric cone in the Euclidean space V , and 𝑇Ω = 𝑉 + 𝑖𝛺the corresponding tube domain in the 

complexified space𝑉ℂ . We shall note 𝑛 the dimension of 𝑉 and  𝑟 the rank of Ω . Moreover , we shall denote by (𝑥|𝑦) the 

scalar product inV, and by Δ the determinant function . For the description of such cones   in terms of Jordan , one may 

use the book of Faraut and Koranyi [8] . One may also have in mind the typical example that one obtains when 𝑉 is the 

space of real symmetric 𝑟 × 𝑟 matrices and Ω is the cone of positive definite matrices . In this example , the scalar product 

on 𝑉 is induced by the Hilbert-Schmidt norm of the matrices , and the determinant function is given by the determinant of 

the matrices . 

The rank is 𝑟 , while the dimension is 
𝑟(𝑟+1)

2
  . 

We shall also make use of the generalized wave operator on  𝑉, given by 

∎ = Δ (
1

𝑖

𝜕

𝜕𝑥
) 

This is a differential operator of degree 𝑟 , defined by the equality  

(
1

𝑖

𝜕

𝜕𝑥
) [∑ 𝑒𝑖(𝑥 𝜉𝑘⁄ ) 

𝑘
] = ∑ Δ(𝜉𝑘)𝑒𝑖(𝑥 𝜉𝑘⁄ )

𝑘
 ,   𝜉𝑘 ∈ 𝑉 

It is the usual derivative (up to a constant) when 𝛺 is the half-line (0, ∞). Its name is due to another fundamental example, 

given by the forward light cone in  𝑅𝑛, 
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{𝑥 ∈  𝑅𝑛 ;  𝑥1 > √𝑥1
2 + ⋯ + 𝑥𝑛

2} 

which is of rank 2 .In this case , the determinant function is equal to  

∆(𝑥) = 𝑥1
2 − 𝑥2

2 − ⋯ − 𝑥𝑛
2  , 

and the operator is wave operator . One may look at [5,2] , which deal with this particular case . 

For 𝜖 ≥ 0 , let 𝐴
(𝑛

𝑟−1+𝜖)

(1+𝜖),(1+𝜖)
= 𝐴

(𝑛
𝑟−1+𝜖)

(1+𝜖),(1+𝜖)
(𝑇Ω) denote the weighted Bergman spaces in the tube domain 𝑇Ω that is the space 

of holomorphic functions 

𝐹𝑘 ∈ ℋ(𝑇Ω) satisfying the integrability condition  

∑ ‖𝐹𝑘‖
𝐴

(
𝑛
𝑟−1+𝜖)

(1+𝜖),(1+𝜖)
 

𝑘
= ∑ ‖𝐹𝑘‖

𝐿
(
𝑛
𝑟−1+𝜖)

(1+𝜖),(1+𝜖)
 

𝑘
 = ∑ [∫ [∫|𝐹𝑘(𝑥 + 𝑖𝑦)|(1+𝜖)𝑑𝑥

𝑉

]
𝛺

]

1
(1+𝜖)

𝑘
< ∞     (1.1) 

We shall impose  𝜖 > 0 to avoid trivial cases where 𝐴
(

𝑛
𝑟−1+𝜖)

(1+𝜖),(1+𝜖)
= {0} . 

The mixed Lebesgue spaces 𝐿
(𝑛

𝑟−1+𝜖)

(1+𝜖),(1+𝜖)
 are defined in an obvious way . We write 𝐿

(𝑛
𝑟−1+𝜖)

(1+𝜖),(1+𝜖)
 and 𝐴

(𝑛
𝑟−1+𝜖)

(1+𝜖)
 to simplify . 

The space 𝐴
(𝑛

𝑟−1+𝜖)

(1+𝜖),(1+𝜖)
 is closed subspace of 𝐿

(𝑛
𝑟−1+𝜖)

(1+𝜖),(1+𝜖)
. 

 The case 𝜖 = 1 is of special interest . It is well-known that every  𝐹𝑘 ∈ 𝐴
(𝑛

𝑟−1+𝜖)

2  can be written as  

∑ 𝐹𝑘(𝑧)
𝑘

= 𝔗𝑘 ∑ 𝑓𝑘(𝑧) = ∫ ∑ 𝑒𝑖(𝑧|𝜉𝑘) 𝑓(𝜉𝑘)𝑑𝑧   , 𝑧 ∈
𝛺 

𝑇Ω(1.2) 

for some functions 𝑓�̂�  ∈ (𝐿2 (Ω ; ∆−(𝑛
𝑟−1+𝜖))  𝑑𝜉𝑘) ( see [8]) . The operator 𝔗 will be called the Fourier – Laplace 

transform of 𝑓𝑘 ( using the usual terminology , it is the Laplace transform of its Fourier transform ) . The functions 𝑓𝑘  may 

be seen as the (Shilov) boundary value of the holomorphic functions 𝐹𝑘 . The orthogonal projection from 𝐿
(

𝑛

𝑟
−1+𝜖)

2  onto 

𝐴
(

𝑛

𝑟
−1+𝜖)

2  , which is called the (weighed) Bergman projection , is denoted by 𝑃
(

𝑛

𝑟
−1+𝜖)

 and explicitly given by 

𝑃
(

𝑛
𝑟

−1+𝜖)
(∑ 𝐹𝐾(𝑍)

𝐾

) = ∫ ∑ 𝐵
(

𝑛
𝑟

−1+𝜖)

𝑘

(𝑧 − �̅�)𝐹𝑘(𝑤)Δ(𝐼𝑚 𝑤)(𝜖−1)𝑑𝑤   
𝑇Ω

 

where 𝐵(𝑛
𝑟−1+𝜖)

(𝑧 − �̅�) = 𝑑(𝑛

𝑟
−1+𝜖)Δ−(

2𝑛

𝑟
−2+2𝜖 )((𝑧 − �̅�)/𝑖) is the reproducing kernel of 𝐴

(𝑛
𝑟−1+𝜖)

2 ( see [8]) . For 

simplification , we have written 

 𝑑𝑤 = 𝑑𝑢 𝑑 (
𝑛

𝑟
− 1 + 𝜖),  for 𝑤 = 𝑢 + 𝑖 (

𝑛

𝑟
− 1 + 𝜖)an element of 𝑇Ω . We can now state the three problems under 

consideration in this survey . 

Problem .1 Boundedness of the Berman projection . The question , here , is know the exact range of (1 + 𝜖), (1 + 𝜖)  for 

which the projection  𝑃(
𝑛

𝑟
−1+𝜖) extends as a bounded operator on  𝐿

( 
𝑛

𝑟
−1+𝜖)

(1+𝜖),(1+𝜖)
 . For obvious reasons ( self-adjointness and 

interpolation), the set of couples (
1

(1+𝜖)
,

1

(1+𝜖)
)for which it is bounded is a convex set in (0,1) × (0,1) , which is 

symmetric around (
1

2
,

1

2
) . 

 Let us recall that , for the upper half-plane , this convex set is the whole square (0,1) × (0,1) . For higher rank , the 

situation is different . From the convexity and symmetric given above , we may restrict our interest to value of (1 + 𝜖) 

which are larger than 2 . We shall first see that there is a small critical index (1 + 𝜖) 
(

𝑛

𝑟
−1+𝜖) 

> 2 such that  𝑃
( 

𝑛

𝑟
−1+𝜖 )

 

defines a bounded operator on  𝐿
(

𝑛

𝑟
−1+𝜖) 

(1+𝜖),(1+𝜖)
 for  
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 1 ≤ 𝜖 ≤ (1 + 𝜖)
(

𝑛

𝑟
−1+𝜖 )

  for all value of (1 + 𝜖) . Moreover , in this range , one has still a bounded operator when the 

kernel  𝐵(
𝑛

𝑟
−1+𝜖)  is replaced by its absolute value , that is a when one considers the positive operator given by  

𝑃
(
𝑛
𝑟

−1+𝜖 )

 +  ∑ 𝐹𝑘(𝑧) = ∫ ∑ |𝐵
(
𝑛
𝑟

−1+𝜖 )
(𝑧 − 𝜛)| 𝐹𝑘(𝜔)𝛥(𝐼𝑚 𝜔)2(

𝑛
𝑟

−1+𝜖) 𝑑𝜔 
𝑘

   
𝑇𝛺

(1.3)

𝑘

  

We shall see that the index (1 + 𝜖)
(

𝑛

𝑟
−1+𝜖 )

 is sharp for this continuity property . 

In the other direction , there is a large critical index , depending on (1 + 𝜖)  ,that we shall call (1 + 𝜖)̃
 (

𝑛

𝑟
−1+𝜖 ),(1+𝜖)

, , such 

that , for  (1 + 𝜖) ≥ (1 + 𝜖)̃
(

𝑛

𝑟
−1+𝜖),(1+𝜖) ,  , the projection 𝑃

(
𝑛

𝑟
−1+𝜖 )

 fails to be bounded for obvious reasons .  

Let us recall that situation is completely different for the Szego projection , which is unbounded in 𝐿(1+𝜖)(𝑉) for 𝜖 ≠ 1 ( 

see [11,9]) . 

Problem 2 .   

Hardy inequality in Bergman spaces .The question , here , is know the range of (1 + 𝜖 ,1 + 𝜖 ) for which one has a Hardy 

type inequality for holomorphic functions on the domain 𝑇Ω 

∑ (𝐹
𝑘,𝐿

(
𝑛
𝑟−1+𝜖 )

(1+𝜖),(1+𝜖))𝑘 ≤ 𝐶(1+𝜖)(1+𝜖) ∑ ‖∆(𝐼𝑚 𝑤)∎𝐹𝑘‖
𝐿

(
𝑛
𝑟−1+𝜖 )

(1+𝜖),(1+𝜖)                   
𝑘

 
𝑘

 (1.4) 

Again , for the upper half-plane , one knows the exact , and in fact it is valid for all (1 + 𝜖) and (1 + 2𝜖) in the interval 

0 ≤ 𝜖 < ∞ . It is an easy consequence of the usual Hardy inequality , which givens an integral inequality between a 

function and its derivative . Let us remark that , since we deal with holomorphic functions , the differential operator 

∎ may be defined as a polynomial in 𝜕 𝜕𝑥⁄  , as we did , or in  𝜕 𝜕𝑦⁄  . 

The converse inequality , where left and right hand side of (1.4) are exchanged , is always valid as a consequence of the 

mean value property . 

Problem 3. Characterization of boundary values Bergman spaces . For the upper half-plane , Bergman spaces are spaces 

are characterized by the fact that their boundary value belong to some Basov space . So, the functions of the Bergman 

spaces may be obtained as Fourier-Laplace transforms of these boundary values ,a property which generalizes situation of 

𝐴2 . 

One would like to have an equivalent characterization in higher rank . We will shall that it is indeed the case for some 

values of (1 + 𝜖), (1 + 𝜖) . We will need a precise description of the geometry of the cone to be able to describe these 

objects, which come from an adapted Littlewood-Paley decomposition . So , we will not be able to state properly Problem 

3 . 

It turns out that the three problem are some sense equivalent . The same critical indices occur in the three problems . In 

particular , all three possess a negative answer for 2 − 𝜖 > (1 + 𝜖)̃
(

𝑛

𝑟
−1+𝜖 ),(1+𝜖)

 , for obvious reasons . So, the equivalent  

between the three problems is only interesting for  1 > 𝜖 > (1 + 𝜖)̃
(

𝑛

𝑟
−1+𝜖 ),(1+𝜖)

 . We may see Problems 2 and 3 as 

equivalent formulations of Problems 1 which help to take care of the oscillations of the kernel . 

We will give precise statements in the other sections ,and given a complete answer for  𝜖 ≤ 1    , with the exact range of 

values  𝜖 < 1 for which the projection 𝑃
(

𝑛

𝑟
−1+𝜖)

 is bounded on 𝐿
(

𝑛

𝑟
−1+𝜖 )

(1+𝜖),(1+𝜖)
 . For there is a gap in the results . We will see 

in the last section how the question opened by this gap may be related to Littlewood-Paley theory for functions on  𝐹𝑘 

with spectrum in 𝛺 .We will then state a last problem 4. 

The present survey is based on joint work of the author with David Bekolle , Gustavo Garrigos , Marco Peloso and Fulvio 

Ricci [1,3,5] . While the first papers dealt only with the forward light cone , te two last ones deal with the general case . 

Once the geometric aspects of the proofs have been developed , using the formalism of Jordan algebras as in [8] , there is 

on difficulty to write in the general case , which we do here . Sections 3 and 4 contain some new statements . We tried to 

give some easy proofs , when they help for the general understanding of the subject . We refer to the different papers for 

the difficult ones .  
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Let us mention that part of the result of [1] , which are related to the small critical index   have also been generalized by 

Bekolle and Temgoua Kagou [6] , using the formalism of Gindikin for the description of the cones . Let us also mention 

that one source of inspiration has been the work of Coifman and Rochberg on atomic decomposition of Bergman spaces 

[7] .  

Finally , I would like to than Gustavo Garrigos , whose comments were very helpful . All this survey has been enriched by 

discussions with him . 

2.   GEOMETRY AND ANALYSIS ON THE CONE  

In order to describe precisely the results , and specially to define Besov spaces , we start with the description of the 

geometry of the cone . We refer to [8] for the context , and to [3] and [4] for the geometric lemmas . 

Considering   as a Jordan algebra , we denote its unit element by e( think of the identity . matrix for the fundamental 

example of real symmetric matrices ) . Let  𝐺  be the identity component of the group of invertible linear transformations 

which leave the cone Ω invariant . It is well know that 𝐺 acts transitively on Ω , which may be identified with the 

Riemannian symmetric space  G/K , where Kis the compact subgroup of elements of G which leave e invariant . The G-

invariant Riemannian metric can be defined by   

〈ξk, ηk〉(1+ϵ) ≔ (𝑡−1ξk|𝑡−1 ηk) 

if  𝑦 = 𝑡𝑒 and ξk , ηk are tangent vectors at y ∈ Ω . We shall denote by  𝑑 the corresponding distance ,and by  ξk , ηk the 

invariant ball centered at  ξk of radius δ . The invariance implies that , for 𝑔𝑘 ∈ G , Bδ(𝑔𝑘  ξk) = 𝑔𝑘  Bδ( ξk) .   

    The determinant function is also preserved by 𝑔𝑘  , in such a way that 

∑ 𝛥(𝑔𝑘𝑦) = 𝛥 ∑ 𝑔𝑘𝑒𝛥(𝑦) = ∑ 𝐷𝑒𝑡𝑔𝑘

𝑟
𝑛∆(𝑦)       (2.1) 

It follows from this formula that an invariant measure in  Ω is given by 𝛥(𝑦)−𝑛
𝑟  𝑑𝑦  . 

The invariance properties allow also to prove that the determinant function is almost constant on the balls of a given 

radius , as well as scalar products . 

Lemma 2.1 :There is a constant 𝜖 > 0 such that ,for 𝑦 ∈ Ω̅ , if  𝜉𝑘  , 𝜉𝑘
′ ∈  Ω with 𝑑(𝜉𝑘  , 𝜉𝑘

′ ) ≤ 2  , then  

∑
1

𝜉𝑘

≤ ∑
∆(𝜉𝑘)

∆(𝜉𝑘
′ )

 ≤ (1 + 𝜖) ;                 (2.2) 

∑
1

𝜉𝑘

≤ ∑
∆(𝜉𝑘|𝑦)

∆(𝜉𝑘
′ |𝑦)

≤ (1 + 𝜖) ;               (2.3) 

1

(1 + 𝜖)
≤  ∑

|𝜉𝑘|

|𝜉𝑘
′ |

 ≤  1 + 𝜖 .                   (2.4) 

Form the previous lemma , it follows that , for all 1 + 𝜖 ∈  Ω and 0 < 𝛿 ≤ 2 , 

𝑚𝑒𝑎𝑠(𝐵𝛿(𝑦)) = 𝑚𝑒𝑎𝑠(𝐵𝛿(𝑒))~𝑉𝑜𝑙(𝐵𝛿(𝑒))~𝛿𝑛 . 

where 𝑉𝑜𝑙(𝐵)stands for the Euclidean volume of 𝐵 , while meas (𝐵 ) stands for its measure for the invariant . 

Next ,. we need the analog for a general cone of the decomposition of the real half –line (0 , +∞)  into an union of dyadic 

intervals [2𝑗  ,2𝑗+1) , which may be seen as invariable 5 balls of constant size . This is given by the next lemma . 

Lemma 2.2 :There exists a sequence of {(𝜉𝑘)𝑗}
𝑗,𝑘

in 𝛺  , and an associated family of disjoint sets  {𝜉𝑗}
𝑗
covering 𝛺 , such 

that 

𝐵1 2⁄ (𝜉𝑘  ) ⊂ 𝐸𝑗 ⊂ 𝐵1 ((𝜉)𝑘𝑗
) 

A sequence of points {𝜉𝑘}𝑗with the above properties is called a lattice of the cone , 

and the associated partition {(𝜉𝑘)𝑗}
𝑗,𝑘

 a Whitney decomposition of the cone 𝛺 . 
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From considerations on the volume of balls we get easily that , for a fixed radius  𝑅 ≥ 1 , the balls   𝐵𝑅(𝜉𝑘)𝑗   . have the 

finite intersection property . That is , these is an integer 𝑁 = 𝑁(𝛺 , 𝑅) so that each point in  𝛺 belongs to at most 𝑁 of 

these balls . Basov spaces . Its existence is given in the next proposition . 

Proposition 2.3 :There exists a sequence of smooth function  ψ𝑗 such that  

1. 𝜓𝑗  ̂ ∈ 𝐶𝑐
∞ (𝐵((𝜉𝑘)𝑗  ,1)) ; 

2.   0 ≤  𝜓𝑗  ̂  ≤  1 and ∑ ∑  𝜓 ̂𝑗(𝜉)𝑘 𝑘   𝑗 = 1    , ∀ 𝜉𝑘 ∈  𝛺 ; 

3. The functions ψ𝑗 are uniformly bounded in 𝐿 1(ℝ𝑛) . 

This implies , in particular , the existence of some constant 𝑐 > 0 such that  

‖∑ 𝜓𝑗  ∗ 𝑓𝑘 

𝑘

‖

(1+𝜖)

≤ 𝑐 ∑‖𝑓𝑘‖(1+𝜖) , ∀ 𝑓𝑘  ∈ 𝐿(1+𝜖)(ℝ𝑛),      

∀𝑗 ,1 ≤ 𝜖 < ∞                       (2.5) 

Roughly speaking , the 𝜓𝑗
′ 𝑠 are obtained from a fixed function by the action of an element of  𝐺which sends e to (𝜉𝑘)𝑗 . 

This allows to compute easily their 𝐿(1+𝜖) norms . 

Associated with the operator ∎ and the Whitney decomposition , we can now introduce the family of Basov-type spaces 

𝐵𝑉
(1+𝜖),(1+𝜖)

  , naturally adapted to the geometry of the cone . They are defined as equivalent classes of tempered 

distributions on 𝑉 , by means of the seminorm : 

∑‖𝑓𝑘‖
𝐵

(
𝑛
𝑟−1+𝜖)

(1+𝜖) ,(1+𝜖) = [∑ ∑ Δ−(
𝑛
𝑟−1+𝜖)(𝜉𝑘)𝑗⟦𝑓𝑘 ∗ 𝜓𝑗⟧

(1+𝜖)

(1+𝜖)

𝑘𝑗 ]

1
(1+𝜖)

 , 𝑓𝑘 ∈ 𝒮′(𝑉)  (2.6)  

The Whitney decomposition of the cone has other applications . It allows to discretize integrals which involve almost 

constant quantities on each piece . Let us give an example of such a situation . The proof is a direct consequence of the 

lemma . 

Proposition 2.4: Let 0 < 𝛿 ≤ 1 be fixed , and  {(𝜉𝑘)𝑗}
𝑗,𝑘

 be a lattice with associated Whitney decomposition  {𝐸𝑗}
𝑗⋆ . 

Then , for every  𝑠 ∈ ℝ , 𝑦 ∈ Ω̅  and for every non-negative function 𝑓𝑘 on 

  the cone , we have  

1

𝐶
∑ ∑ 𝑒−(1+𝜖)(𝑦|𝜉𝑘)𝛥′(𝜉𝑘)𝑗

𝑘
∫  𝑓𝑘(𝜉𝑘)

𝑑𝜉𝑘

𝛥(𝜉𝑘)
𝑛
𝑟𝐸𝑗𝑗

 

≤ ∫ ∑  𝑓𝑘(𝜉𝑘)𝑒−(𝑦|𝜉𝑘)𝛥′(𝜉𝑘)
𝑑𝜉𝑘

(𝜉𝑘)
𝑛
𝑟

  
Ω

 

≤ C ∑ ∑ 𝑒
−

1
(1+𝜖)

(𝑦|𝜉𝑘)𝑗
−𝑠

𝛥′(𝜉𝑘)𝑗
𝑘

∫  𝑓𝑘(𝜉𝑘)
𝑑𝜉𝑘

𝛥(𝜉𝑘)
𝑛
𝑟𝐸𝑗𝑗

  

where (1 + 𝜖) is the constant in (2.3) and 𝐶 depends only . 

One may think at first view , that such estimates will be difficult to use because of the constant (1 + 𝜖) . But a further 

integration in the  𝑦 variable transforms into powers , as given in the next lemma . 

Lemma 2.5 : For 𝑦 ∈ Ω and 𝑠 ∈ ℂ with 𝑅𝑒 𝑠 >
1

𝑛
− 1  , then  

∫ ∑ 𝑒−(𝜉𝑘|𝑦)

𝑘Ω

𝛥′(𝜉𝑘)
𝑑𝜉𝑘

𝛥(𝜉𝑘)
𝑛
𝑟

= ΓΩ(𝑠)Δ−𝑠(𝑦). 

Moreover , the integral does not converge for other values of 𝑠 . 
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𝛤𝛺(𝑠) is the Gamma function in Ω , which may be computed in terms of the usual Gamma function . We will need the 

following lemma , which is as easy consequence of the previous one . Here 𝐿
(
𝑛
𝑟−1+𝜖)

(1+𝜖)
(Ω) denotes the space of functions on 

(Ω) whose (1 + 𝜖) − 𝑡ℎ power is integrable for the measure ∆(𝑦)(𝜖−1)𝑑𝑦 . 

Lemma 2.6 : The function ∆(𝑦 + 𝑒)−𝑠 is in 𝐿
(𝑛

𝑟−1+𝜖)

(1+𝜖) (Ω) if and only if  𝐿
(𝑛

𝑟−1+𝜖)

(1+𝜖) 
𝑠 >

1

(1+𝜖)
(𝑉 +

𝑛

𝑟
− 1) . 

In fact , we also need in the proofs the generalized powers of ∆ . We give here their definitions for completeness , but 

refer to [8 ,4] for their use in estimates . Let  {𝑐1, … , 𝑐𝑟} bee a fixed Jordan frame in 𝑉 (think of diagonal matrices for 

which the diagonal entries are all zero except for one equal to 1 ) . Let ∆ 1(𝑥) , … , ∆𝑟(𝑥) the principal minors of  𝑥 ∈ 𝑉 , 

with respect to the fixed Jordan frame {𝑐1, … , 𝑐𝑟} . The generalized function in 𝛺 is defined as  

Δ𝑠 = Δ1
𝑠1−𝑠2(𝑥)Δ2

𝑠2−𝑠3(𝑥) … Δ𝑟
𝑠𝑟(𝑥), 𝑠 =  (𝑠1, 𝑠2, … , 𝑠𝑟) ∈ ℂ𝑟 , 𝑥 ∈ Ω 

When all 𝑠𝑗 are equal to , we see that    ∆𝑠= ∆𝑟  .  

3.   THE SMALL CRITICAL INDEX 

Th small critical index is given by  

(1 + 𝜖) (𝑛
𝑟−1+𝜖) = 1 +

𝑛 − 𝑟 + 𝑟𝜖

𝑛 − 𝑟
  (3.1) 

Let us mention , even if we will not use it , that for the forward light cone and the usual Bergman space  𝑟 = 2 , (𝑛

𝑟
−1+𝜖) =

𝑛

2
  , it is the critical index for Bochner-Riesz means in ℝ 𝑛−1 . 

We see first that the small critical index is relation to Problem 2 . More precisely , it occurs when generalizing the Hardy 

inequality on the real half-line , given by 

∫  ∑ (∫ 𝑓𝑘(𝑦)𝑑𝑦
∞

(𝑛
𝑟−1+𝜖)

) 
𝑘

(1+𝜖)

(
𝑛

𝑟
−1+𝜖)

(𝑛
𝑟−2+𝜖) 

𝑑 (
𝑛

𝑟
−1+𝜖)

∞

0

≤ 𝐶 ∫ ∑ 𝑓𝑘(𝑦)(𝑛
𝑟−2+𝜖)𝑑

𝑘
𝑦

∞

0

 

for positive  𝑓𝑘 . To replace the integration , the first idea that one has in mind is to use an explicit solution of the equation  

∎𝑚 𝑔𝑘 inside the cone , with   large enough so that its elementary solution , given by 𝑐Δ𝑚−
𝑛

𝑟 𝜒 Ω , is locally integrable  

( which is the case  𝑚 >
𝑛

𝑟
− 1 ) . Then  

𝑇𝑚 ( ∑ 𝑓𝑘 (
𝑛

𝑟
−1+𝜖) 

𝑘
) = ∫  ∑ 𝑓𝑘 (( 

𝑛

𝑟
−1+𝜖) + 𝑦) Δ(𝑦)𝑚−𝑛

𝑟 𝑑
𝑘

𝑦
Ω

 

satisfies the equation  ∎𝑚 𝑔𝑘 . We will prove the following proposition , which can be called the Hardy inequality of 

order  on  Ω . 

Proposition 2.4 : There exists a constant C  such that , for all positive functions 𝑓𝑘 ,  

∫  ∑ [𝑇𝑚𝑓𝑘 (
𝑛

𝑟
− 1 + 𝜖)]

(1+𝜖)

Δ (
𝑛

𝑟
− 1 + 𝜖) (𝜖−1)𝑑 (

𝑛

𝑟
−1+𝜖)

𝑘
 ≤ ∫  ∑ [∆(𝑦)𝑚𝑓𝑘(𝑦)](1+𝜖)∆(𝑦)(𝜖−1)𝑑𝑦 

𝑘ΩΩ

 

if and only if 1 + 𝜖 < (1 + 𝜖)(𝑛
𝑟−1+𝜖)  . 

Proof : It is equivalent to prove that the operator 𝐶 , with kernel given by 

Δ (𝑦 − (
𝑛

𝑟
−1+𝜖))

𝑚−
𝑛
𝑟

𝜒Ω (𝑦 − (
𝑛

𝑟
−1+𝜖)) Δ(𝑦)(−𝑚+1−𝜖) , 

is bounded in 𝐿 
(

𝑛
𝑟−1+𝜖)

(1+𝜖)
(Ω) . A necessary condition is that 𝑓𝑘 belong to 𝐿 

(
𝑛
𝑟−1+𝜖)

(1+𝜖)′
(Ω) , with 𝑇∗ the formal adjoint of 𝑇 , 

when 𝑓𝑘 is the characteristic function of the ball  𝐵 1(𝑒) . One can show that , for 𝑦 ∈ 𝑁 𝑒 + Ω  , with 𝑁 a fixed integer 

which is large enough , one has the bound below  

𝑇∗ ( ∑ 𝑓𝑘  (𝑦)) > 𝑐∆(𝑦)−(
𝑛
𝑟

−1+𝜖) 
𝑘
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necessary condition follows from Lemma 2.6 . 

The sufficiency follows from a routine argument , using Schur 's lemma and generalized powers of ∆ : we find that there 

exists some generalized power 𝑠 such that  

𝑇(∆s
1 (1+ϵ)⁄

)  ≤ C ∆s
1 (1+ϵ)⁄

𝑇∗ (∆s
1 (1+ϵ)′⁄

) ≤ 𝐶∆s
1 (1+ϵ)′⁄

 

This is based on integrability conditions . We shall not go into details , and refer to the bibliography for this kind of 

computations . 

This proposition leads to a Hardy inequality of order 𝑚 for holomorphic functions on the tube domain 𝑇Ω , 

‖∑ 𝐹𝑘 
𝑘

‖
𝐿

(
𝑛
𝑟−1+𝜖)

(1+ϵ),(1+𝜖)
≤ 𝐶(1+ϵ),(1+𝜖) ∑  ‖∆(𝐼𝑚 𝜔)𝑚∎𝑚𝐹𝑘‖

𝐿
(

𝑛
𝑟−1+𝜖)

(1+ϵ),(1+𝜖)
 

𝑘
(3.3) 

for all 0 ≤ 𝜖 < ∞ , with  1 + 𝜖 < (1 + 𝜖)(
𝑛
𝑟

−1+𝜖) 

We will see that this range of values can always be extended . So this first method , inspired by the method on the upper 

half-plane , does not give optimal results .  

Let us now show the role of the small index in Problem 1 .We will prove the following theorem .  

Theorem 3.2 :The operator  given by (1.3 ), is bounded on 𝑃
(𝑛

𝑟−1+𝜖)
+  if and only if  (1 + 𝜖)

(𝑛
𝑟−1+𝜖)

′ < (1 + 𝜖) <

(1 + 𝜖)(𝑛
𝑟−1+𝜖) .     

Proof : Let us first prove the sufficient condition . Clearly , 𝑃
(𝑛

𝑟−1+𝜖)
+  acts as a convolution operator in the 𝑥, 𝑢 variable ( if 

we note 𝑧 = 𝑥 + 𝑖𝑦  ,  

 𝑤 = 𝑢 + 𝑖(𝑛

𝑟
−1+𝜖) ) . Moreover , the norm of this convolution operator acting in  𝐿(1+𝜖)(𝑉) is bounded by the  𝐿1 norm of 

the kernel |Δ (⋅ +𝑖 (𝑦 + (𝑛

𝑟
−1+𝜖)))|

−(2
𝑛

𝑟
−1+𝜖)

 .This norm is easily computed , using Lemma 

 ( 2.5) and Plancherel formula . Indeed , we have that  

Lemma 3.3 :  For  α ∈ ℝ , the integral 

∫ |∆(𝑥 + 𝑖𝑦)|−𝛼𝑑𝑥  ,    𝑦 ∈ 𝛺
𝑉

 

is finite if and only if  α > 2𝑛

𝑟
− 1 . In this case , it is equal to c(α)Δ(𝑦)−𝛼+

𝑛
𝑟  . 

Using also Minkowski inequality , we see that 

∑ (∫ |𝑃
(𝑛

𝑟−1+𝜖) 
+ 𝑓𝑘(𝑥 + 𝑖𝑦)|

(1+𝜖)

𝑑𝑥
𝑉

)

1
(1+𝜖)

𝐤 ≤ 𝑐 ∫ ∑ 𝛥(𝑦 + 𝑛

𝑟
− 1 + 𝜖 )

−(𝑛
𝑟−1+𝜖)

𝐹𝑘(𝑛

𝑟
− 1 + 𝜖  )𝑄𝑘𝛺

(𝑛

𝑟
− 1 + 𝜖)

(𝜖−1)
𝑑(𝑛

𝑟
−

1 + 𝜖)  

with 

∑ 𝐹𝑘 (
𝑛

𝑟
− 1 + 𝜖)

𝑘
= (∑ ∫ |𝑓𝑘 (𝑢 + 𝑖 (

𝑛

𝑟
− 1 + 𝜖))|

(1+𝜖)

𝑑𝑢
𝑉𝑘

)

1
(1+𝜖)

  . 

By assumption , 𝐹𝑘 belongs to 𝐿𝑉
(1+𝜖)(Ω) , and has norm equal to the norm of 𝑓𝑘 in 𝐿

(𝑛
𝑟−1+𝜖) 

(1+𝜖),(1+𝜖)
(Ω) . To conclude , we use 

the next proposition .  

Proposition 3.4 :  The operator with kernel ∆ (𝑦 + (𝑛

𝑟
− 1 + 𝜖))

−(𝑛
𝑟−1+𝜖)

 is bounded on 𝐿𝑉
(1+𝜖)(Ω) if and only if  (1 +

𝜖)
(𝑛

𝑟−1+𝜖)
′ < (1 + 𝜖) < (1 + 𝜖)(𝑛

𝑟−1+𝜖).  

We do not give the this proposition . It follows the same lines as the proof of Proposition ( 3.1) . 
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Let us now prove the necessary condition of the theorem . We test the operator  𝑃
(𝑛

𝑟−1+𝜖) 
+  on functions  𝑓𝑘(𝑥 + 𝑖𝑦) =

𝜒|𝑥|<2 (𝑥)𝑔𝑘(𝑦) , with 𝑔𝑘  a positive function supported in the intersection of the cone with the Euclidean ball of radius 
1

2(1+𝜖)
 centered at 0 . The constant  (1 + 𝜖) , here , is the constant of Lemma (2.1) . Let us take for granted that there exists 

a constant  𝑐 such that , for 𝑦 ∈ 𝛺  with |𝑦| < 1

2(1+𝜖)
 , one has 

∫ |∆(𝑥 + 𝑖𝑦)|−𝑎𝑑𝑥 ≥ 𝑐∆(𝑦)−𝑎+𝑛
𝑟

|𝑥|<1

 .         (3.4) 

We postpone the proof of this inequality , and go on with the proof of the theorem . For  𝑥 such that |𝑥| < 1 2⁄  , and  𝑦 ∈

𝛺  such that |𝑦| < 1
(2+2𝜖)

 , one has the inequality  

𝑃
(

𝑛
𝑟−1+𝜖)

+ ∑ 𝑓𝑘(𝑥 + 𝑖𝑦)𝑘 ≥ 𝑐 ∫ ∑ Δk (𝑦 + (𝑛

𝑟
− 1 + 𝜖))

−(𝑛
𝑟−1+𝜖)

𝑔𝑘(𝑛

𝑟
− 1 + 𝜖)𝑄(𝑛

𝑟
− 1 + 𝜖 )

(𝜖−1)
𝑑(𝑛

𝑟
− 1 + 𝜖) .

Ω
  

By assumption , there exists a constant  𝐶 independent of 𝑔𝑘  , such that  

∫ ∑ (∫ Δ(𝑦 + 𝑛

𝑟
− 1 + 𝜖)

−(𝑛
𝑟−1+𝜖) 

𝑔𝑘(𝑛

𝑟
− 1 + 𝜖)Δ(𝑛

𝑟
− 1 + 𝜖)

(𝜖−1)
𝑑(𝑛

𝑟
− 1 + 𝜖) 

Ω
)𝑘

(1+𝜖)

∆(𝑦)(
𝑛
𝑟−1+𝜖)𝑑𝑦

𝑦∈𝛺,|𝑦|< 1
(2+2𝜖)

  

≤ 𝐶 ∫ ∑ 𝑔𝑘𝑘 (𝑛

𝑟
− 1 + 𝜖)

(1+𝜖)
Δ(𝑛

𝑟
− 1 + 𝜖)

(𝜖−1)
𝑑(𝑛

𝑟
− 1 + 𝜖)

Ω
  

By homogeneity of the kernel , we can replace the constant  1
(2+2𝜖)

 by any positive constant 𝑁 : for every positive function 

𝑔𝑘 on Ω , we have the  inequality  

∫ ∑ (∫ Δ(𝑦 + 𝑛

𝑟
− 1 + 𝜖)

−(𝑛
𝑟−1+𝜖)

 𝑔𝑘(𝑛

𝑟
− 1 + 𝜖)Δ(𝑛

𝑟
− 1 + 𝜖)

(𝜖−1)
𝑑(𝑛

𝑟
− 1 + 𝜖) 

Ω
)

(1+𝜖)

∆(𝑦)(𝜖 −1)𝑑𝑦 
𝑦∈𝛺,|𝑦|<𝑁

  

≤ 𝐶 ∫ ∑ 𝑔𝑘(𝑛

𝑟
− 1 + 𝜖)

(1+𝜖)

𝑘 ∆(𝑛

𝑟
− 1 + 𝜖)

(𝜖−1)
𝑑(𝑛

𝑟
− 1 + 𝜖) .

𝑦∈𝛺,|𝑛
𝑟−1+𝜖|<𝑁

  

Using the density of compactly supported functions , we get the same inequality without any bound on integrals . The  

necessary condition of the theorem is then a consequence of the necessary condition in Proposition  3.4 . 

It remains to prove (3.4) . It is sufficient to prove the inequality  

∫ |∆(𝑥 + 𝑖𝑦)|−𝑎𝑑𝑥 ≥ 𝑐∆(𝑦)−𝑎+𝑛
𝑟

𝐵1(𝑦)

 . 

Indeed , we deduce from Lemma (2.1) that the  invariant ball 𝐵1(y)is contained in the  Euclidean ball  {|𝑥| < 1} . Now , 

we can use the fact that  ∆ is almost constant on the  invariant ball , which allows to write that the left hand side is 

equivalent to 

∆(𝑦)
𝑛
𝑟 ∫ |∆(𝑥 + 𝑖𝑦)|−𝑎 𝑑𝑥

∆(𝑥)
𝑛
𝑟

𝐵1(𝑦)
 تراجع هذه 

Using the action of 𝐺𝐾 and the formula of change of variable for ∆ , we see that this last quantity is equal to ∆(𝑦)−𝑎+
𝑛
𝑟  , 

multiplied by the same integral when computed for  𝑦 = 𝑒  . This last factor is clearly a positive constant . 

For both Problems 1 and 2 , we see that the study below the small critical index can be deduced from the  boundedness of 

positive operators on the cone 𝛺 . One needs different methods to take into account the oscillations of the Bergman kernel 

. 

The large Critical Index4. 

The large critical index is equal to  

(1 + 𝜖)̃
(

𝑛
𝑟−1+𝜖),(1+𝜖) =

𝑛
𝑟

− 1

(
𝑛

𝑟(1 + 𝜖)′ − 1)
+

(1 + 𝜖)𝑘 =
(2

𝑛
𝑟

− 2 + 𝜖) 

(
𝑛

𝑟(1 + 𝜖)′ − 1)
 

with the convention that (1 + 𝜖)̃
(𝑛

𝑟−1+𝜖),(1+𝜖) = ∞ if (1 + 𝜖)′  ≥ 𝑛

𝑟
 , that is (1 + 𝜖) ≤ 1 + (𝑛

𝑟
− 1)

−1
 . 
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Let us first consider its relation with Problem 1. It follows from Lemma (2.6 ) that the Bergman kernel 𝐵(𝑛
𝑟−1+𝜖)(∙ +𝑖𝑒) =

𝑑(𝑛

𝑟
− 1 + 𝜖)∆−(𝑛

𝑟−1+𝜖)+𝑐(𝑐 − 𝑖) is in 𝐿
(

𝑛
𝑟−1+𝜖)

(1+𝜖)′,(1+𝜖)′ 
 if and only when 1 + 𝜖 < (1 + 𝜖)̃

(𝑛
𝑟−1+𝜖),(1+𝜖) . But , if the  

Bergman projection of the  characteristic function of an Euclidean ball , which is centered at 𝑖𝑒  and contained inside  𝑇Ω , 

belongs to 𝐿
(𝑛

𝑟−1+𝜖)

(1+𝜖) ′
, (1 + 𝜖)′ . By the mean  value equality , this is the  function 𝐵(𝑛

𝑟−1+𝜖)(∙ +𝑖𝑒) , up to a constant . So the 

condition 1 + 𝜖 < (1 + 𝜖)̃
(

𝑛
𝑟−1+𝜖),(1+𝜖)  is necessary for the boundedness of the Bergman projection 𝑃(

𝑛
𝑟−1+𝜖) . 

We do not know whether this condition is sufficient for the boundedness of the Bergman projection . Nevertheless , it is 

sufficient to have a reproducing formula for 𝐴
(𝑛

𝑟−1+𝜖)

(1+𝜖),(1+𝜖)
 functions in terms the Bergman kernel : for  𝑓𝑘 ∈ 𝐴

(𝑛
𝑟−1+𝜖)

(1+𝜖),(1+𝜖)
 and   

𝑧 ∈ 𝑇Ω , we may write  

∑ 𝑓𝑘(𝑧)
𝑘

= ∫ ∑ 𝐵(
𝑛
𝑟−1+𝜖)(𝑧 − �̅�)𝑓𝑘(𝑤)Δ(𝐼𝑚 𝑤)(𝜖−1) 𝑑

𝑘
𝑤

𝑘

 . 

Indeed , this identity is valid for 𝑓𝑘 ∈ 𝐴
(𝑛

𝑟−1+𝜖) 
2 . Such functions are dense in 𝐴

(𝑛
𝑟−1+𝜖)

(1+𝜖),(1+𝜖)
 , and we can pass to the limit 

since 𝐵(𝑛
𝑟−1+𝜖)(𝑧 −⋅) is in 𝐿

(
𝑛
𝑟−1+𝜖)

(1+𝜖)′,(1+𝜖)′ 
 . 

Let  us now consider Problem 2 . We will only consider the values of (1 + 𝜖) for which 𝜖 > 1 + (
𝑛

𝑟
− 1)

−1

 , and refer to 

[ 4 ] for other values . We prove first that there is no Hardy inequality for 1 + 𝜖 < (1 + 𝜖)̃
(𝑛

𝑟−1+𝜖),(1+𝜖). Indeed , there 

exists a function which is in  𝐴
(𝑛

𝑟−1+𝜖)

(1+𝜖),(1+𝜖)
 , and which is annihilated by the ∎ operator. It is sufficient to consider the 

function ∆(𝑧 + 𝑖𝑒)−𝑛
𝑟+1 , and to use again Lemma (2.6) . When (1 + 𝜖) = (1 + 𝜖)̃

(𝑛
𝑟−1+𝜖),(1+𝜖) ( we only consider here the 

case when (1 + 𝜖)̃
(𝑛

𝑟−1+𝜖),(1+𝜖) < ∞ ) , the proof is more technical : one considers the function  

𝐹𝑘(𝑧) = Δ((𝑧 + 𝑖𝑒) 𝑖⁄ )−𝑛
𝑟+1 (1 + 𝑙𝑜𝑔∆((𝑧 + 𝑖𝑒 𝑖⁄ ))

− 1
(1+𝜖)

 ,   𝑧 ∈ 𝑇Ω 

It is possible to compute explicitly ∎ 𝐹𝑘 , and to see that , in its expression , the Logarithm appears with a square ( see [ 

8]) . It is also possible to compute the 𝐿
(𝑛

𝑟−1+𝜖)

(1+𝜖),(1+𝜖)
 norms of both functions , and see that  his an infinite norm , while  

∎ 𝐹𝑘  has a finite one . Similar computations are done in [4] for another counter example which is used later . We conclude 

that , as for problem 1 . , one can find easily that problem 2 has a negative answer above the large critical index .  

Let us mention a related problem , the injectivity of the ∎ 𝐹𝑘operators . We have seen that , for 1 + 𝜖 <

(1 + 𝜖)̃
(𝑛

𝑟−1+𝜖),(1+𝜖) and   𝜖 > 1 + (
𝑛

𝑟
− 1)

−1

 , there exists a function 𝐹𝑘 ∈ 𝐴
(

𝑛
𝑟−1+𝜖)

(1+𝜖),(1+𝜖)
 such that ∎ 𝐹𝑘 = 0 . Can one 

prove that it is not the case for the other values such that  1 + 𝜖 < (1 + 𝜖)̃
(

𝑛
𝑟−1+𝜖),(1+𝜖) . For 1 + 𝜖 <

(1 + 𝜖)̃
(𝑛

𝑟−1+𝜖),(1+𝜖) using the representative formula (4.1) , we can write that :  

∑ ∎𝑚(∑ 𝐹𝑘(𝑧)𝑘 )𝑘 = 𝑐 ∫ ∑ 𝐵(𝑛
𝑟−1+𝜖+𝑚) (𝑧 − �̅�)𝐹𝑘(𝑤)∆(𝐼𝑚 𝑤)(𝜖−1)𝑑𝑤 𝑘𝑇Ω

 .  

We used the fact that ∎𝑚∎−𝛼 = 𝑐Δ−𝛼−𝑚  , which implies that ∎𝑚𝐵(
𝑛
𝑟−1+𝜖) (⋅ −𝑤) = 𝑐 𝐵(

𝑛
𝑟−1+𝜖+𝑚) (⋅ −𝑤) . To prove 

that there does not exist such a function with ∎𝑚𝐹𝑘 = 0 . It is sufficient to prove the density of the functions 

𝐵(𝑛
𝑟−1+𝜖+𝑚)(𝑧̅ −⋅) in  𝐴

(𝑛
𝑟−1+𝜖)

(1+𝜖)′,(1+𝜖)′

. Indeed , if it is the case and if ∎𝑚𝐹𝑘(𝑧) = 0 for all 𝑧 , then the scalar product of 𝐹𝑘 

with 𝐵(
𝑛
𝑟−1+𝜖)(𝑧̅ −⋅) is also 0 , which implies , by the representative formula ,that 𝐹𝑘 is identically 0 . For 𝑚 large , the 

density follows the fact that the  projection 𝑃(𝑛
𝑟−1+𝜖+𝑚) is bounded in 𝐿

(
𝑛
𝑟−1+𝜖)

(1+𝜖),(1+𝜖)
, see [5] . We have proved that the 

∎ operator is injective for 1 + 𝜖 < (1 + 𝜖)̃
(𝑛

𝑟−1+𝜖),(1+𝜖) . It remains to consider the  other case s , for which we have no 

conjecture . 
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Let us finally consider Problem 3 , and the Basov spaces that we have introduced in Section 2 . For 𝐹𝑘  a consider set in V , 

let us denote by 𝑆𝐹𝑘 
′ =  𝑆𝐹𝑘 

′ (𝑉) the  space of tempered distributions with Fourier transform supported in  𝐹𝑘. It is clear 

that the natural definition for 𝐿
(

𝑛
𝑟−1+𝜖)

(1+𝜖),(1+𝜖)
 is the following .  

Definition  (4.1 ) : Given (𝑛

𝑟
−1+𝜖)  ∈ ℝ , 0 ≤  𝜖 < ∞  , we define 𝐵

(
𝑛
𝑟−1+𝜖)

(1+𝜖),(1+𝜖)
 as the space of equivalence classes  of 

tempered  distributions .  

𝐵
(𝑛

𝑟−1+𝜖)

(1+𝜖),(1+𝜖)
 = {𝑓𝑘 ∈ 𝑆Ω̅

′  |‖𝐹𝐾‖
 𝐵

(
𝑛
𝑟−1+𝜖)

(1+𝜖),(1+𝜖) < ∞} 𝑆𝜕Ω
′  .⁄  

One would like to identify an element of 𝐵
(

𝑛
𝑟−1+𝜖)

(1+𝜖),(1+𝜖)
 with a representative of the equivalence class , and also to define its 

Fourier-Laplace transform . Again , we claim that this possibility is related with the condition 1 + 𝜖 <

(1 + 𝜖)̃
(𝑛

𝑟
−1+𝜖),(1+𝜖) . This is based on the next proposition .  

Proposition (4.2) :  Let  (𝑓𝑘) 𝑗   a sequence of functions on 𝑉 such that 𝐵1(𝜉𝑘) 𝑗  has spectrum in    

and  

∑ ∆(𝜉𝑘) 𝑗
−(𝑛

𝑟−1+𝜖)
‖(𝐹𝑘)𝑗‖

(1+𝜖)

(1+𝜖)
< ∞. 

Then , if 1 + 𝜖 < (1 + 𝜖)̃
(𝑛

𝑟−1+𝜖),(1+𝜖) the series  ∑ (∑ 𝑓𝑘𝑘 ) 𝑗𝑗  converges in 𝑆′. Moreover , this property holds for all such 

sequences only if  1 + 𝜖 < (1 + 𝜖)̃
(𝑛

𝑟−1+𝜖),(1+𝜖) . 

Proof : Let us prove the  necessary condition . Assume that 𝜑 is a smooth function whose Fourier transform has compact 

support , and is 1 in a neighborhood of 0 .Since the series ∑ ∑ |〈(𝑓𝑘) 𝑗 , 𝜑〉| 𝑘𝑗 converges for any order which is chosen on 

the (𝜉𝑘)𝑗
  ′𝑠 , it means that ∑ ∑ |〈(𝑓𝑘) 𝑗 , 𝜑〉| 𝑘𝑗  converges , with the sun taken for (𝜉𝑘)𝑗 in a neighborhood of 0 . If (𝑓𝑘) 𝑗  has  

spectrum in 𝐵1 2⁄ (𝜉𝑘)𝑗  , then this means that ∑ ∑ |〈(𝑓𝑘) 𝑗, 𝜓𝑗〉| 𝑘𝑗  converges . Using the action of  𝐺 we may assume that 

𝜓𝑗is equal to ∆((𝜉𝑘)𝑗)
−𝑛

𝑟 𝜓𝑗  𝜊 𝑔𝑘 , and take also (𝑓𝑘)𝑗 = 𝑎𝑗𝑓𝑘 𝜊 𝑔𝑘  where  (𝜉𝑘)𝑗  is a fixed function whose spectrum is 

contained in 𝐵1 2⁄ (𝑒) and such that 〈𝑓𝑘 , 𝜓𝑗〉 is not zero . We take for 𝑔𝑘 an element of G such that (𝜉𝑘)𝑗 = 𝑔𝑘𝑒 . Then , we 

have that  ∑ |𝑎𝑗| < ∞𝑗  whenever ∑ ∆(𝜉𝑘) 𝑗
−(

𝑛

𝑟
−1+𝜖)−𝑛(2−𝜖)

𝑟(2+𝜖) 
|𝑎𝑗|

(1+𝜖)
< ∞  . This implies the inequality 

∑ ∑  ∆(𝜉𝑘)𝑗
(

𝑛
𝑟

−1+𝜖)(2−𝜖)′ (2−𝜖)+𝑛(2−𝜖)′

𝑟(2+𝜖)⁄
< ∞

𝑘𝑗
.  

where the sum is taken for (𝜉𝑘)𝑗 in a neighborhood of 0 . Using Proposition 2.4 , the fact that this sum is finite is 

equivalent to the fact that 

∫ ∆(𝑦)
 (

𝑛
𝑟

−1+𝜖) 
(2−𝜖)′

(2−𝜖) +
𝑛(2−𝜖)′

𝑟(2+𝜖) −
𝑛
𝑟𝑑𝑦 < ∞ .

𝑦∈𝑉,|𝑦|<𝜖

 

This last inequality is valid if and only if (2 − 𝜖) < (2 − 𝜖)̃
(

𝑛

𝑟
−1+𝜖),(2+𝜖)

. 

We refer to [4] for the proof of the fact that , whenever (2 − 𝜖) < (2 − 𝜖)̃
(

𝑛

𝑟
−1+𝜖),(2+𝜖)

 and 𝜓𝑗  belongs to 𝑆′, then the 

semi-norm of 𝜓𝑗  in 𝐵
−(

𝑛

𝑟
−1+𝜖)(2−𝜖)′ /(2−𝜖) 

(2+𝜖)′,(2−𝜖)′

 is finite . So the series  ∑ |〈(𝑓𝑘)𝑗, 𝜓𝑗〉| 𝑗 is absolutely convergent . 

Assume that (2 − 𝜖) < (2 − 𝜖)̃
(

𝑛

𝑟
−1+𝜖),(2+𝜖)

. If we use the previous proposition for (𝑓𝑘)𝑗 = 𝑓𝑘 ∗  𝜓𝑗with 𝑓𝑘 ∈ 𝑆Ω̅
′   such 

that  ∑ ‖𝑓𝑘‖
𝐵

(
𝑛
𝑟−1+𝜖)

(1+𝜖),(1+𝜖) < ∞ 𝑘  , we see that ∑ ∑ 𝑓𝑘 ∗  𝜓𝑗𝑘𝑗  converges in  𝑆′ to an element 𝑓𝑘
≉ which depends only on the 

equivalence class of 𝑓𝑘 . The mapping 𝑓𝑘 ⟼ 𝑓𝑘
≉defines a mapping from to .  

Moreover , it is an injective mapping . To prove this , it is sufficient to prove that 𝑓𝑘 ∗  𝜓𝑗 = 0 for all  whenever 𝑓𝑘
≉ = 0 . 

But , then  
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∑ 𝑓𝑘 ∗  𝜓𝑗(𝑥)
𝑘

= ∑ ∑ 〈𝑓𝑘, 𝜓𝑗(𝑥 −⋅)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅〉
𝑘𝑗

= 〈∑ ∑  𝑓𝑘 ∗  𝜓𝑗
𝑘

 ,

𝑗

𝜓𝑗(𝑥 −⋅)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅〉 

= ∑ 〈𝑓𝑘
≉ , 𝜓𝑗(𝑥 −⋅)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅〉

k
= 0 

In the previous identities , the infinite one because of the finite intersection property , and this allows to pass to the  limit . 

This means that , below the large critical index ,  𝐵
(

𝑛

𝑟
−1+𝜖) 

(2+𝜖),(2−𝜖)
 indentifies with a space of tempered distributions . One 

many also define the  space of holomorphic functions 𝐵
(

𝑛

𝑟
−1+𝜖) 

(2+𝜖),(2−𝜖)
 as the Fourier Laplace transform of 𝐵

(
𝑛

𝑟
−1+𝜖) 

(2+𝜖),(2−𝜖)
 . Indeed 

, for 𝑓𝑘 ∈ 𝐵
(

𝑛

𝑟
−1+𝜖) 

(2+𝜖),(2−𝜖)
 with (2 − 𝜖) < (2 − 𝜖)̃

(
𝑛

𝑟
−1+𝜖),(2+𝜖)

 , we can define ∑ ℒ𝑘(𝑓𝑘) 𝑘 = ∑ ℒ𝑘(𝑓𝑘
≉) 𝑘 = ∑ ∑ ℒ𝑘(𝑓𝑘 ∗𝑘𝑗

 𝜓𝑗). As before , to prove that this last sum is well defined , itsufficient to prove that , for 𝑦 ∈ 𝐵
(

𝑛

𝑟
−1+𝜖) 

(2+𝜖),(2−𝜖)
, the function 

whose Fourier transform is 𝑒𝑥𝑝(−𝑦| ⋅) has a finite semi-norm in 𝐵
−(

𝑛

𝑟
−1+𝜖)(2−𝜖)′ /(2−𝜖)

(2+𝜖)′,(2−𝜖)′

 . The computation is nearly the 

same as the previous one , and it is the case when (2 − 𝜖) < (2 − 𝜖)̃
(

𝑛

𝑟
−1+𝜖),(2+𝜖)

 . When (2 − 𝜖) < (2 − 𝜖)̃
(

𝑛

𝑟
−1+𝜖),(2+𝜖)

 , 

it makes sense to ask whether 𝐵
(

𝑛

𝑟
−1+𝜖) 

(2+𝜖),(2−𝜖)
 is equal to 𝐴

(
𝑛

𝑟
−1+𝜖) 

(2+𝜖),(2−𝜖)
. This is Problem 3. 

4.   IN BETWEEN; RESULTS AND OPEN QUESTIONS 

We now state the results , and refer to [4] for the proofs . Let us first consider Problem 2 and 3 for Theorem ( 5.1): For 

𝜖 ≤ 0 and for all  0 ≤ 𝜖 < ∞ , the spaces 𝐴
(

𝑛

𝑟
−1+𝜖) 

(2+𝜖),(2−𝜖)
and 𝐵

(
𝑛

𝑟
−1+𝜖) 

(2+𝜖),(2−𝜖)
 coincide. Moreover , for m a positive integer , the 

∎𝑚 operator is an isomorphism between 𝐴
(

𝑛

𝑟
−1+𝜖) 

(2+𝜖),(2−𝜖)
 and 𝐴

(
𝑛

𝑟
−1+𝜖)+(2−𝜖)𝑚 

(2+𝜖),(2−𝜖)
 .  

We will only sketch the proof for Problem 2 , to show again the importance of representation formulas . Remember that 

∎𝑚𝐵
(

𝑛

𝑟
−1+𝜖)

(⋅ −𝑤) = 𝑐𝐵
(

𝑛

𝑟
−1+𝜖)+𝑚 

(⋅ −𝑤). For 𝐹𝑘  a function in  𝐴
(

𝑛

𝑟
−1+𝜖)+(2−𝜖)𝑚 

(2+𝜖),(2−𝜖)
 , which many be written as  

∑ 𝐹𝑘(𝑧)
𝑘

= ∫ ∑ 𝐵
(

𝑛
𝑟

−1+𝜖) 
(𝑧 − �̅�)𝐹𝑘(𝑤)Δ(𝐼𝑚 𝑤)(𝜖−1+𝑚)𝑑𝑤 

𝑘
 

𝑇Ω 

  

a natural solution of Equation ∎𝑚 𝐺𝑘  = 𝐹𝑘 is given by  

∑ 𝐺𝑘(𝑧)
𝑘

= ∫  ∑ 𝐵
(

𝑛
𝑟

−1+𝜖) 
(𝑧 − �̅�)𝐹𝑘(𝑤)Δ(𝐼𝑚 𝑤)(𝜖−1+𝑚)𝑑𝑤 

𝑘
 

𝑇Ω 

 

It remains to see that this makes sense , and gives the only solution ( remember that we have proved the uniqueness ) .In 

the next theorem , we state the equivalence between Problem 1,2 and 3 .  

Theorem (5.2) : Let 0 ≤ 𝜖 < ∞ and 2 < (2 − 𝜖) < (2 − 𝜖)̃
(

𝑛

𝑟
−1+𝜖),(2+𝜖)

 . Then there exists an integer  𝑚0 such that the 

three properties are equivalent : 

1. The projection 𝑃
(

𝑛

𝑟
−1+𝜖) 

extends into a continuous operator in 𝐿
(

𝑛

𝑟
−1+𝜖) 

(2+𝜖),(2−𝜖)
.  

2. A holomorphic function 𝐹𝑘 belongs to 𝐴
(

𝑛

𝑟
−1+𝜖) 

(2+𝜖),(2−𝜖)
 if and only if it may be written as ℒ(𝑓), with 𝑓 ∈ 𝐵

(
𝑛

𝑟
−1+𝜖) 

(2+𝜖),(2−𝜖)
. 

3. For some 𝑚 larger that𝑚0 , then there exists𝐶 such that the  Hardy inequality of order  , 

‖∑ 𝐹𝑘
𝑘

‖
𝐿

(
𝑛
𝑟−1+𝜖) 

(2+𝜖),(2−𝜖)
≤ 𝐶(2+𝜖),(2−𝜖) ∑ ‖( 𝐼𝑚 𝑤)𝑚∎𝑚𝐹𝑘‖

𝐿
(

𝑛
𝑟−1+𝜖) 

(2+𝜖),(2−𝜖)

𝒌
 

holds for all 𝐹𝑘 ∈ 𝐴
(

𝑛

𝑟
−1+𝜖) 

(2+𝜖),(2−𝜖)
 . 

Moreover , if one of the properties is satisfied , then inequalities of Hardy are valid at all orders.  
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We do not know whether 𝑚0 can be taken equal to 1 , or whether there exists a range for which the Hardy inequality of 

order 1 holds , while Hardy inequalities of higher order do not . It follows from this theorem and theorem 1.3 that Problem 

1 , 2 and 3 have a positive answer in the range [2, 2 − 𝜖) . It remains to explore the range  [(2 −

𝜖 )
(

𝑛

𝑟
−1+𝜖)

, (2 − 𝜖)̃
(

𝑛

𝑟
−1+𝜖),(2+𝜖)

) . The next theorem will give a partial answer . Let us first consider another related 

problem , which has its own interest . 

Problem 4 :Basov spaces for 
𝑛

𝑟
+ 𝜖 = 1 , and purely Fourier analysis approach . Up to now , we only considered values of 

(
𝑛

𝑟
−1+𝜖) for which 𝜖 > 0 . Such values are related to the weighted Bergman spaces . The case  

𝑛

𝑟
+ 𝜖 = 1 is related to 

Hardy spaces : by this , we mean the Laplace transforms of functions which are in 𝐿2(𝑉) are functions of the Hardy space  

𝐻2, and conversely .  

Once one has a Whitney decomposition of the cone 𝛺 , one may ask whether there is an associated Littlewood-Paley 

inequality for functions in 𝐿(2+𝜖)(𝑉) , that is , whether there exists a constant 𝐶 such that , for (𝑓𝑘)𝑗 ∈ 𝐿(2+𝜖)(𝑉) ,  

‖(∑ ∑ |(𝑓𝑘)𝑗 ∗ 𝜓𝑗|
2

𝑘𝑗 )
1
2
‖

(2+𝜖) 

≤ 𝐶 ∑ ‖(𝑓𝑘)𝑗‖
(2+𝜖)𝑘   

By duality , it implies that , for (𝑓𝑘)𝑗  with spectra in  𝐵𝑗(𝜉𝑘)𝑗  , one has the inequality  

‖∑ ∑ (𝑓𝑘)𝑗𝑘𝑗 ‖
(2+𝜖) 

≤ 𝐶 ‖(∑ ∑ |(𝑓𝑘)𝑗|
2

𝑘𝑗 )
1
2
‖

(2+𝜖)′

  

For  𝜖 ≠ 2 , both Littlewood-Paley inequalities for (2 + 𝜖) and (2 + 𝜖)′ cannot be valid in the same time , since the 

characteristic function of the cone 𝛺 is not a Fourier multiplier .  

We shall in fact consider a different property , which is weaker when 𝜖 ≥ 0 and 𝑠 ≥ 2 : the existence of some constant 𝐶 

such that  

(∑ ∑ ‖(𝑓𝑘)𝑗 ∗ 𝜓𝑗‖
(2+𝜖)

𝑠
𝑘𝑗 )

1
2

≤ 𝐶‖∑ (𝑓𝑘)𝑗𝑘 ‖
(2+𝜖)

  

 Such an inequality can only be valid for  𝑠 ≥ 2 . Indeed , take (𝑓𝑘)𝑗 with disjoint spectra in 𝐵1
2
(𝜉𝑘)𝑗  and  ∑ 𝑓𝑘 =

∑ 휀𝑗
∑ (𝑓𝑘)𝑗  𝑘 where the 휀𝑗

 , 𝑠 are independent ±1 given by Rademacher functions . Then , using Khintchine inequalities 

and assuming that (5.2) holds , we find that  

(∑ ∑ ‖(𝑓𝑘)𝑗  ∗ 𝜓𝑗‖
(2+𝜖)

𝑠
𝑘𝑗 )

1
2

≤ 𝐶 ‖(∑ ∑ |(𝑓𝑘)𝑗|
2

𝑘𝑗 )
1
2
‖

(2+𝜖)

  

We test last inequality on N functions (𝑓𝑘)𝑗 with same modulus ( taking translations of the same function on Fourier side ) 

to find a contradiction if 𝑠 < 2 . 

In the other direction , (5.2) is certainly valid for 𝑠 = 𝑚𝑎𝑥((2 + 𝜖), (2 + 𝜖)′) , by interpolations between the cases 𝜖 =

1 , 𝜖 < ∞ , for which it is a consequence of the fact that the norms of 𝜓𝑗in 𝐿1 are uniformly bounded , and 𝜖 = 0 , for 

which it follows from the finite intersection property . 

By duality , it is equivalent to the fact that , for a finite sequence of functions (𝑓𝑘)𝑗whose transforms are supported in 

𝐵1(𝜉𝑘)𝑗, one has the inequality  

We call (𝐶(2+𝜖)′(𝑠′)) this last property . This means in particular that , when (𝐶(2+𝜖)(𝑠)) holds , one has the following 

inclusion related to the Basov space for 𝑛

𝑟
+𝜖 = 1  

‖∑ ∑ (𝑓𝑘)𝑗𝑘𝑗 ‖
(2+𝜖)

≤ 𝐶 (∑ ‖∑ (𝑓𝑘)𝑗𝑘 ‖
(2+𝜖)′

𝑠′

𝑗 )

1

𝑠′

  

Problem 4 consists in finding the critical index for (𝐶(2+𝜖)(𝑠)) , between 𝑚𝑖𝑛((2 + 𝜖), (2 + 𝜖)′) and 2 . Let us remark 

that (𝐶(2+𝜖)(𝑠)) implies , in particular , that infinite sums  ∑ ∑ (𝑓𝑘)𝑗𝑘𝑗  for which ∑ ∑ ‖(𝑓𝑘)𝑗‖
(2+𝜖)

𝑠
𝑘𝑗  is finite , converge in 
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𝑆′ . This indicates , by Proposition 4.2 that 𝑠 < (2 − 𝜖)̃
0,(2+𝜖) =

𝑛
𝑟−1

(
𝑛

𝑟(2+𝜖)′−1)
  .This constraint is only interesting when this 

number is smaller than 2 , that is we answer to Problem 4 when  𝜖 ≤ 0 : then (2 − 𝜖) is the best possible index . For 𝜖 >

0  , it seems to be a difficult problem , which is related to the other ones as it can be see in the next theorem .  

Theorem( 5.3) : If the condition (𝐶(2+𝜖)(𝑠))holds , then Problems 1,2 and 3 have a positive answer for (2 − 𝜖) in the 

range [2. 𝑠(2 − 𝜖)(𝑛
𝑟−1+𝜖)) . It is the case , in particular , when 𝑠 = 𝑚𝑖𝑛((2 + 𝜖), (2 + 𝜖)′) Moreover , this last result is 

optimal when 𝜖 < 1 .         

Again , we refer to [4] for the proof . The counterexamples are given , as before , by functions of the determinant function 

involve powers and logarithms . We also prove there that a necessary condition for a positive answer to Problems 1, 2 and 

3 is the existence of a constant C such that ,for all finite sequences of functions (𝑓𝑘)𝑗whose Fourier s transforms are 

supported are supported in  𝐵1(𝜉𝑘)𝑗, one has the inequality  

‖∑ ∑ (𝑓𝑘)𝑗𝑘𝑗 ‖
(2+𝜖)

(2−𝜖)
≤ 𝐶 ∑ ∑ ∆(𝜉𝑘)𝑗

−(
𝑛
𝑟−1+𝜖)

𝑘 ‖(𝑓𝑘)𝑗‖
(2+𝜖)

(2−𝜖)

𝑗   

where the sum is restricted  to those (𝜉𝑘)𝑗
′
𝑠 which are of Euclidean norm less than 1 . An easy consequence of this , using 

Khintchine inequalities as before , is the necessary condition (2 − 𝜖) < 2(2 − 𝜖)(
𝑛
𝑟−1+𝜖)for all  (2 + 𝜖) : the larger range 

is obtained for 𝜖 = 0 . 

These result leave a gap , for Problems 1to 3 , as well as for Problem 4 , for  𝜖 > 0  .It is possible that solving the 

problems in the gap is of consider difficulty . Moreover, the sufficient conditions given by Problem 4 and the necessary 

conditions (5,3) seem very close, and give a purely Fourier analysis formulation of the different problems . Indeed , work 

in progress allows to fill part of the gap when using it for the forward light cone in dimension 3 . 

Among other open problems , let us mention the boundedness of the projection 𝑃(𝑛
𝑟−1+𝜖) for the limit case  𝜖 = 0 ( see 

[10]) .One does not know whether there is an interval of(2 + 𝜖) for which it is bounded in  𝐿(2+𝜖) .  
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