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Abstract: The Szego projection of tube domains over irreducible symmetric cones is unbounded in L3+9., Indeed,
this is a consequence of the fact that the characteristic function of a disc is not a Fourier multiplier, a fundamental
theorem proved by C. Fefferman in the 70's. The same problem, related to the Bergman projection, deserves a
different approach. In this survey, based on joint work of the author with D. Bekolle, G. Garrigos, M. Peloso and
F. Ricci, we give partial results on the range of 1 + € for which it is bounded. We also show that there are two
equivalent problems, of independent interest. One is a generalization of Hardy inequality for holomorphic
functions. The other one is the characterization of the boundary values of functions in the Bergman spaces in terms
of an adapted Littlewood-Paley theory. This last point of view leads naturally to extend the study to spaces with
mixed norm as well.

Keywords: Whitney decomposition; Symmetric cone; Bergman projector; Littlewood — Paley; Hardy inequality.

1. INTRODUCTION

For V be an irreducible symmetric cone in the Euclidean space V, and T, = V + i2the corresponding tube domain in the
complexified spaceV ¢ . We shall note n the dimension of VV and r the rank of Q . Moreover , we shall denote by (x|y) the
scalar product inV, and by A the determinant function . For the description of such cones in terms of Jordan , one may
use the book of Faraut and Koranyi [8] . One may also have in mind the typical example that one obtains when V is the
space of real symmetric r X r matrices and Q is the cone of positive definite matrices . In this example , the scalar product
on V is induced by the Hilbert-Schmidt norm of the matrices , and the determinant function is given by the determinant of
the matrices .

The rank is r , while the dimension is “*

We shall also make use of the generalized wave operator on V, given by

—A(l 6)
"= i 0x

This is a differential operator of degree r , defined by the equality

G%) D ] = e, goev

It is the usual derivative (up to a constant) when 2 is the half-line (0, o). Its name is due to another fundamental example,
given by the forward light cone in R™,
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{xe R™; x; > /xlz+---+x,21}

which is of rank 2 .In this case , the determinant function is equal to

AG) =2} —2F — =2,
and the operator is wave operator . One may look at [5,2] , which deal with this particular case .

Fore >0, let A(“ﬂ()“e) A(“ﬂ()”e) (T) denote the weighted Bergman spaces in the tube domain T, that is the space
of holomorphic functions

F, € H (T, ) satisfying the integrability condition

1
(1+¢)
Z ”Fk” are(+e) = Z ”Fk” area+e) = Zk [f UIFk(x+ iy)|(1+€)dx” <o (1.1)
o v

(7—1+s) (7 1+€)

We shall impose € > 0 to avoid trivial cases where A(“E) a+e) - = {0}.

—1+e)
The mixed Lebesgue spaces L(“i()“e) are defined in an obvious way . We write L((lfi()“e) and A(“i | to simplify .
The space Aéffi’g”) is closed subspace of L(“i ()”6).

The case € = 1 is of special interest . It is well-known that every F, € A can be written as

——1+€)

F(2) =% ) fil2) = '@ f(&)dz ,z €Ty(1.2)
k a

for some functions f, € (L? (Q; A‘(%‘“f)) dé&,) ( see [8]) . The operator T will be called the Fourier — Laplace
transform of £, (using the usual terminology , it is the Laplace transform of its Fourier transform ) . The functions f,, may

be seen as the (Shilov) boundary value of the holomorphic functions F, . The orthogonal projection from L(__1+ 9 onto
A?E—1+e) , Which is called the (weighed) Bergman projection , is denoted by P(ﬂ-1+e) and explicitly given by

where Bn_,,,(z = W) = d(G-1+0ld & 2+2E)((z—vT/)/i) is the reproducing kernel of A?g_m)( see [8]) . For

simplification , we have written

dw =dud (g -1+ e), forw=u+i G -1+ e)an element of T, . We can now state the three problems under

consideration in this survey .

Problem .1 Boundedness of the Berman projection . The question , here , is know the exact range of (1 + €), (1 + €) for

which the projection P extends as a bounded operator on L(ln”)'(”e) . For obvious reasons ( self-adjointness and

T—1+€) (3-1+6)

interpolation), the set of couples ( :

ey (He))for which it is bounded is a convex set in (0,1) x (0,1) , which is

. 11
symmetric around (E'E) .

Let us recall that , for the upper half-plane , this convex set is the whole square (0,1) x (0,1) . For higher rank , the
situation is different . From the convexity and symmetric given above , we may restrict our interest to value of (1 + ¢€)

which are larger than 2 . We shall first see that there is a small critical index (1 + €) Borve) 2 such that Pen noite)
T
defines a bounded operator on LEEE);(;“) for
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1<e<(1+ e)(g for all value of (1 + ¢) . Moreover , in this range , one has still a bounded operator when the

—14€)

) is replaced by its absolute value , that is a when one considers the positive operator given by

kernel B(§—1+e

+ _ _ 2C-1+e)
P($—1+e) ZFk(Z) = ank |B(g_1+e)(z @) | F(w)A(Im w)*'r do (1.3)
k
We shall see that the index (1 + 6)(2—1+e) is sharp for this continuity property .
In the other direction , there is a large critical index , depending on (1 + ¢) ,that we shall call (1 + e)( 1+¢) such

n_ IR
p- ,(1+€)

that,for (1+¢)=>(1+ e)(g the projection P(g fails to be bounded for obvious reasons .

—1+€),(1+€) ’ ? —1+€)

Let us recall that situation is completely different for the Szego projection , which is unbounded in L+€ (V) for e # 1 (
see [11,9]) .

Problem 2 .

Hardy inequality in Bergman spaces .The question , here , is know the range of (1 + €,1 + € ) for which one has a Hardy
type inequality for holomorphic functions on the domain T,

Z (F, a+re.a+e)k < Care)i+e) Z lAUm w)mE |l a+e.a+e) (1.4)
ko T (-14e k (B-1+€)

Again , for the upper half-plane , one knows the exact , and in fact it is valid for all (1 + €) and (1 + 2¢) in the interval
0 <e<oo . Itisan easy consequence of the usual Hardy inequality , which givens an integral inequality between a
function and its derivative . Let us remark that , since we deal with holomorphic functions , the differential operator
m may be defined as a polynomial in d /dx , as we did , orin 0 /dy .

The converse inequality , where left and right hand side of (1.4) are exchanged , is always valid as a consequence of the
mean value property .

Problem 3. Characterization of boundary values Bergman spaces . For the upper half-plane , Bergman spaces are spaces
are characterized by the fact that their boundary value belong to some Basov space . So, the functions of the Bergman
spaces may be obtained as Fourier-Laplace transforms of these boundary values ,a property which generalizes situation of
A?

One would like to have an equivalent characterization in higher rank . We will shall that it is indeed the case for some
values of (1 + €), (1 + €) . We will need a precise description of the geometry of the cone to be able to describe these
objects, which come from an adapted Littlewood-Paley decomposition . So , we will not be able to state properly Problem
3.

It turns out that the three problem are some sense equivalent . The same critical indices occur in the three problems . In

particular , all three possess a negative answer for 2 —e > (1 + e)(g_1+e)(1+e) , for obvious reasons . So, the equivalent
= )

between the three problems is only interesting for 1 >¢ > (1 + E)(E . We may see Problems 2 and 3 as

—1+e)(1+e)

equivalent formulations of Problems 1 which help to take care of the oscillations of the kernel .

We will give precise statements in the other sections ,and given a complete answer for ¢ <1 , with the exact range of

values e < 1 for which the projection P is bounded on L(”El)‘(1
r

_14) @ ) For there is a gap in the results . We will see

+€)
in the last section how the question opened by this gap may be related to Littlewood-Paley theory for functions on F;
with spectrum in £ .\We will then state a last problem 4.

The present survey is based on joint work of the author with David Bekolle , Gustavo Garrigos , Marco Peloso and Fulvio
Ricci [1,3,5] . While the first papers dealt only with the forward light cone , te two last ones deal with the general case .
Once the geometric aspects of the proofs have been developed , using the formalism of Jordan algebras as in [8] , there is
on difficulty to write in the general case , which we do here . Sections 3 and 4 contain some new statements . We tried to
give some easy proofs , when they help for the general understanding of the subject . We refer to the different papers for
the difficult ones .
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Let us mention that part of the result of [1] , which are related to the small critical index have also been generalized by
Bekolle and Temgoua Kagou [6] , using the formalism of Gindikin for the description of the cones . Let us also mention
that one source of inspiration has been the work of Coifman and Rochberg on atomic decomposition of Bergman spaces

[71.

Finally , I would like to than Gustavo Garrigos , whose comments were very helpful . All this survey has been enriched by
discussions with him .

2. GEOMETRY AND ANALYSIS ON THE CONE

In order to describe precisely the results , and specially to define Besov spaces , we start with the description of the
geometry of the cone . We refer to [8] for the context , and to [3] and [4] for the geometric lemmas .

Considering as a Jordan algebra , we denote its unit element by e( think of the identity . matrix for the fundamental
example of real symmetric matrices ) . Let G be the identity component of the group of invertible linear transformations
which leave the cone Q invariant . It is well know that G acts transitively on Q , which may be identified with the
Riemannian symmetric space G/K , where Kis the compact subgroup of elements of G which leave e invariant . The G-
invariant Riemannian metric can be defined by

EoMdare = E 8t ™ M)

if y=teand ., ny are tangent vectors at y € (1 . We shall denote by d the corresponding distance ,and by &, ,ny the
invariant ball centered at &, of radius & . The invariance implies that , for g, € G, Bs(gx &) = gx Bs( &) -

The determinant function is also preserved by g, , in such a way that
Z A(gry) =4 Z gred(y) = Z DetginA(y)  (2.1)

It follows from this formula that an invariant measure in ( is given by A(y)‘g dy .

The invariance properties allow also to prove that the determinant function is almost constant on the balls of a given
radius , as well as scalar products .

Lemma 2.1 :There is a constant € > 0 such that ,for y € Q, if & ,&, € Qwith d(&,,&;) < 2 , then

RN, |

ng sy <+ 2.2)
1 AGkly) .

Q5= digm st @
1 1S |

m = @ < 1l+e€. (2.4)

Form the previous lemma , it follows that , forall 1+ e € Qand0 < § <2,
meas(35 (y)) = meas(Blg(e))~Vol(B(g (e))~6".
where Vol(B)stands for the Euclidean volume of B , while meas (B ) stands for its measure for the invariant .

Next ,. we need the analog for a general cone of the decomposition of the real half —line (0, +c0) into an union of dyadic
intervals [2/,2/*1) , which may be seen as invariable 5 balls of constant size . This is given by the next lemma .

Lemma 2.2 :There exists a sequence of {(fk)j}jkin £ , and an associated family of disjoint sets {E,}jcovering 0, such
that

By/2(5) € Ej < By (©x)
A sequence of points {; };with the above properties is called a lattice of the cone,,

and the associated partition {(fk)j}j ! Whitney decomposition of the cone 2 .
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From considerations on the volume of balls we get easily that , for a fixed radius R > 1, the balls Bg(&x); . have the
finite intersection property . That is , these is an integer N = N(2, R) so that each point in 2 belongs to at most N of
these balls . Basov spaces . Its existence is given in the next proposition .

Proposition 2.3 :There exists a sequence of smooth function ; such that
L9, €ce (B((Gw; 1)) ;

20< ¢, <1andy; T, ¥ ;) =1 V&€ Q;

3. The functions s; are uniformly bounded in L *(R™) .

This implies , in particular , the existence of some constant ¢ > 0 such that

lej * fr
k

<D fillase ¥ fi € LOO®M),

(1+€)

Vil<e<ow (2.5)

Roughly speaking , the ¥;" s are obtained from a fixed function by the action of an element of Gwhich sends e to (&) .
This allows to compute easily their L+ norms .

Associated with the operator m and the Whitney decomposition , we can now introduce the family of Basov-type spaces

B]ﬁ“e)'(”f) , naturally adapted to the geometry of the cone . They are defined as equivalent classes of tempered
distributions on V , by means of the seminorm :

1
T fes W) 26)

Sllfill javo.aro = [Z; T &9, [fe w51 ey

G-1+e)

The Whitney decomposition of the cone has other applications . It allows to discretize integrals which involve almost
constant quantities on each piece . Let us give an example of such a situation . The proof is a direct consequence of the
lemma .

Proposition 2.4: Let0 < & < 1 be fixed , and {(fk)]-}jk be a lattice with associated Whitney decomposition {Ej}j* .
Then, forevery s € R,y € Q and for every non-negative function f; on

the cone , we have

1 déi
Z —(1+a WIS 4/ . —
CZE; my&&@z@y

it e L
< [ 20 Ao

<cC —ﬁ(ﬂfk);sélr . dfk _
ZZ; G@Lﬁ@ﬁa;

where (1 + €) is the constant in (2.3) and C depends only .

One may think at first view , that such estimates will be difficult to use because of the constant (1 + ¢) . But a further
integration in the y variable transforms into powers , as given in the next lemma .

Lemma25:Fory € Qands € CwithRe s >%—1 , then

f Z e~ 47 (£,) al: 7 = [a()A~*(y).
Q k A(Szk)F

Moreover , the integral does not converge for other values of s .
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I, (s) is the Gamma function in Q , which may be computed in terms of the usual Gamma function . We will need the
following lemma , which is as easy consequence of the previous one . Here L%fis)(ﬂ) denotes the space of functions on
T

() whose (1 + €) — th power is integrable for the measure A(y) € Ddy .

s (1+e) (1+€) 1 n_
Lemma 2.6 : The function A(y + e)™% isin L )(Q) if and only if L(n 1+6)S s>— o (V + 1)

In fact , we also need in the proofs the generalized powers of A. We give here their definitions for completeness , but
refer to [8 ,4] for their use in estimates . Let {c;, ..., c,} bee a fixed Jordan frame in V (think of diagonal matrices for
which the diagonal entries are all zero except for one equal to 1) . Let A ;(x), ..., A.(x) the principal minors of x € V,
with respect to the fixed Jordan frame {c,, ..., ¢,.} . The generalized function in 2 is defined as

Ay = AT ()02 (x) L AT (), s = (51,52, ,5.) ECT,x €Q
When all s; are equal to , we see that  A;= A" .
3. THE SMALL CRITICAL INDEX

(7 1 é‘) n—r '

Let us mention , even if we will not use it , that for the forward light cone and the usual Bergman space r = 2, (2-1+e) =
% , it is the critical index for Bochner-Riesz means in R ™1 .

We see first that the small critical index is relation to Problem 2 . More precisely , it occurs when generalizing the Hardy
inequality on the real half-line , given by

(1+€)
” ” n (F-2+e) n ® n ..
J; Zk (f@_m)fk()/)dy) (;—1+e) d (;—1+e) < Cfo Zkfk(y)(r )d y

for positive f; . To replace the integration , the first idea that one has in mind is to use an explicit solution of the equation

n
m™ g, inside the cone , with large enough so that its elementary solution , given by cA™ 7y ¢ , is locally integrable

(which is the case m >=—1). Then

Tm(Z fk ——1+e J z f (——1+e)+y)A(y)m

satisfies the equation m™ g, . We will prove the following proposition , which can be called the Hardy inequality of
order on Q.

Proposition 2.4 : There exists a constant C such that , for all positive functions f, ,

[ D s E=14) a1+ ) Pa () = [ B 106)" 0N O80) Dy

ifandonlyif1+e < (1+ e)(g

-1+€) *

Proof : It is equivalent to prove that the operator C , with kernel given by

A (y - (;—1+E)>m—% Ya (y - (;—He)) Ay)—mHi-e)
(1+e)

is bounded in L (s )(Q) A necessary condition is that f;, belong to L (“6) )(Q) with T* the formal adjoint of T,

when f, is the characteristic function of the ball B;(e) . One can show that ,fory e Ne+Q , with N a fixed integer
which is large enough , one has the bound below

T fe O > ) )
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necessary condition follows from Lemma 2.6 .

The sufficiency follows from a routine argument , using Schur 's lemma and generalized powers of A : we find that there
exists some generalized power s such that

’ i
T(A;/(1+e)) <C Ag/(1+6)T* (A;l/(1+€) ) < CA;-/(1+€)

This is based on integrability conditions . We shall not go into details , and refer to the bibliography for this kind of
computations .

This proposition leads to a Hardy inequality of order m for holomorphic functions on the tube domain T, ,

2.5

forall 0 < € < oo, with 1+6<(1+6)(g

< Carouro ), IAUM )" 8"l gro0s0 (33)

(7—1+e)

(1+e) (1+e)
7—1+e)

~1+€)

We will see that this range of values can always be extended . So this first method , inspired by the method on the upper
half-plane , does not give optimal results .

Let us now show the role of the small index in Problem 1 .We will prove the following theorem .

Theorem 3.2 :The operator given by (1.3 ), is bounded on P+$_1+E) if and only if (1 +E)’($—1+e) <(A+e)<
a1+ 6)($—1+e) .
Proof : Let us first prove the sufficient condition . Clearly , Pé_m) acts as a convolution operator in the x, u variable (if

wenotez =x + iy,

w=u+ i(§—1+e) ) . Moreover , the norm of this convolution operator acting in L+ (V) is bounded by the L' norm of
—(22-1+¢

the kernel |A ( +i (y + (2—1+e)))| .This norm is easily computed , using Lemma

(2.5) and Plancherel formula . Indeed , we have that

Lemma 3.3 : For a € R, the integral
f [A(x +iy)|™%dx , yEN
14

is finite if and only if o> 2% — 1. In this case , it is equal to c(c)A(y) ™7 .

Using also Minkowski inequality , we see that

1
(a+e) |\ -G~ )
e )“”gcfnzka(y+§—1+e) G Ip(—1+e)o@-1+6)  a(-

S [Pl yve fix + )]
1+e)

with

Zka(——1+e (Z “fk u+l(—_1+6>)|(1+6)du>(1+e).

By assumption , F;, belongs to LE,“E) (©2) , and has norm equal to the norm of f; in L((}ﬁ?fl)”) () . To conclude , we use

the next proposition .

~(F-1+e)

Proposition 3.4 : The operator with kernel A (y +(2-1+ e)) is bounded on L9 (Q) if and only if (1 +

6),(2—1+s) <(1l+e)<(+ E)($

~1+€)"

We do not give the this proposition . It follows the same lines as the proof of Proposition ( 3.1) .
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Let us now prove the necessary condition of the theorem . We test the operator P(E_l +e) ON functions f,(x +iy) =
r

X|x|<2 () g, () , with g, a positive function supported in the intersection of the cone with the Euclidean ball of radius
2(1+ 5 centered at 0 . The constant (1 + €) , here, is the constant of Lemma (2.1) . Let us take for granted that there exists

aconstant ¢ such that, for y € 2 with |y| < 2= 2(1+ 5 One has

f [ACx + iy) | %dx = cA(y)_‘”% . (3.4)
|x|<1

We postpone the proof of this inequality , and go on with the proof of the theorem . For x such that |x| < 1/2,and y €
£ suchthat |y| < one has the inequality

(2+ze) !

_(%_1 €) €—
Pé_1+€)2kfk(x+iy)ZcfnZkA(y+(§—1+6)) ’ g(E-1+6e)Q(2-1+ )( 1)d( —1+e¢€).

By assumption , there exists a constant C independent of g, , such that

_m_ (1+€) n
feapieps Ze(A0+2-1+0 0@ -1400E =140 dE-1+6)) AT Idy

(1+E) (

<€ g (G- 140 8¢ -1+ Va(-1+0)

By homogeneity of the kernel , we can replace the constant by any positive constant N : for every positive function

(2+2 €)
Jr 0n Q , we have the inequality

n _(%_1'*'6) n n (-1, e (e-1)
fyeﬂ.|y|<1vz (fQA(y I 1+ 6) gk(? -1+ E)A(7 -1+ E) d(; -+ 6) ) AG) @y

=C nyﬂ,|%—1+E|<NZk gk(g -1+ E)(He) A(? -1+ 6)(6_1)‘1(% -1+ 6) .

Using the density of compactly supported functions , we get the same inequality without any bound on integrals . The
necessary condition of the theorem is then a consequence of the necessary condition in Proposition 3.4 .

It remains to prove (3.4) . It is sufficient to prove the inequality
f |ACx + iy)|~%dx > cA(y) o7 .
B1(y)

Indeed , we deduce from Lemma (2.1) that the invariant ball B, (y)is contained in the Euclidean ball {|x| < 1} . Now ,
we can use the fact that A is almost constant on the invariant ball , which allows to write that the left hand side is
equivalent to

n . —a 4dx . |
AQDT f5, |G + i) |7 —5 220 el

AT

Using the action of G, and the formula of change of variable for A, we see that this last quantity is equal to A(y)“”%
multiplied by the same integral when computed for y = e . This last factor is clearly a positive constant .

For both Problems 1 and 2 , we see that the study below the small critical index can be deduced from the boundedness of
positive operators on the cone 2 . One needs different methods to take into account the oscillations of the Bergman kernel

The large Critical Index4.

The large critical index is equal to

- (224
(1 + 6)(%—1+6),(1+€) = n— (1 + E)k = n—
(r(l +e) >+ (r(1 +e) 1)

with the convention that (1 + €)(n_y,.¢) 146y = @ if (L +€)" 22 thatis (1+€) < 1+ (3 - 1)
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Let us first consider its relation with Problem 1. It follows from Lemma (2.6 ) that the Bergman kernel Bn_, , (- +ie) =

d(2—1+e)a G+ — ) isin L((lﬂj{g*f)' if and only when 1+ € < (T + €)(n_y,¢) 140 - B, if the

Bergman projection of the characteristic function of an Euclidean ball , which is centered at ie and contained inside T ,
(1+e)’
(E-1+e)

condition1+e < (1 + e)(g

belongs to L (1+ €)' . Bythe mean value equality , this is the function B(g_He)(- +ie) , up to a constant . So the

) Is necessary for the boundedness of the Bergman projection P

—1+6),(1+e —1+e) .

We do not know whether this condition is sufficient for the boundedness of the Bergman projection . Nevertheless , it is

sufficient to have a reproducing formula for A&figm functions in terms the Bergman kernel : for f; € A&fzsm and
T T

z € Ty , We may write

Zkfk(Z) N szk B(;—1+6) (z = W) f(w)A(Im W)(E_l) dw.

Indeed , this identity is valid for f;, € AZE_HE) . Such functions are dense in Agjfi‘gﬂ) , and we can pass to the limit

1+e) ,(1+¢e)’

since Bn_,,¢)(z =) isin L(;_HE)

-1
Let us now consider Problem 2 . We will only consider the values of (1 + €) for whiche > 1 + (g - 1) , and refer to

[ 4 ] for other values . We prove first that there is no Hardy inequality for 1 +e¢ < (1 + e)(g_lﬂ)’(lﬁ). Indeed , there

exists a function which is in Agji‘gﬂ) , and which is annihilated by the m operator. It is sufficient to consider the

function Az + ie) "', and to use again Lemma (2.6) . When (1 +¢) = (1 + €)(2_1+e)1+¢) (We 0Ny consider here the

case when (1 + €)n_;,¢) (146 < @) . the proof is more technical : one considers the function

Fo(2) = A((z + ie) /i) 7+ (1 +logA((z + ie/i))_m , Z€Ty

It is possible to compute explicitly m F, , and to see that , in its expression , the Logarithm appears with a square ( see [

8]) . It is also possible to compute the L((lﬁti‘gﬂ) norms of both functions , and see that his an infinite norm , while

m F, has a finite one . Similar computations are done in [4] for another counter example which is used later . We conclude
that , as for problem 1 ., one can find easily that problem 2 has a negative answer above the large critical index .

Let us mention a related problem , the injectivity of the m F,operators . We have seen that , for 1+¢€<

(1+€),(1+€)
(E-1+e)

prove that it is not the case for the other values such that 1+E<(1+E)(ﬁ
"

P — -1
1+ e)(%_lﬁ),me) and e>1+ (2 - 1) , there exists a function F, € A such that m F,, = 0. Can one

—1+E),(1+E) FOI’ 1 + € <

(1 + €)(n_14¢),a1+e) USNG the representative formula (4.1) , we can write that :

2 W (B Fe(@) = ¢ i T B@_yserm) @ = WFW)AUIm w) < Vdw

We used the fact that m™m™% = cA™*™™ , which implies that @™Bn_, oy (: =w) = ¢ B(n_y, 4 p) (- =w) . To prove

that there does not exist such a function with m™F, =0 . It is sufficient to prove the density of the functions

Bn_yseim)(@ =) in Aéfi'g”ey. Indeed , if it is the case and if m™F,(z) = 0 for all z, then the scalar product of F,

with B(%_1+E)(Z_—') is also 0, which implies , by the representative formula ,that F, is identically 0 . For m large , the

density follows the fact that the projection Py, +m) is bounded in L((lﬂfig+e), see [5] . We have proved that the

m operator is injective for 1+ e < (1 + e)(g It remains to consider the other case s, for which we have no
r

—1+¢€),(1+€) -

conjecture .
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Let us finally consider Problem 3, and the Basov spaces that we have introduced in Section 2 . For F,, a consider setinV ,

let us denote by Sg, = S, (V) the space of tempered distributions with Fourier transform supported in  Fy. It is clear

that the natural definition for L((lﬁtigﬂ) is the following .
T

Definition (4.1 ) : Given (2—1+e) ER,0< e <o , we define B(%ffi‘e()“f) as the space of equivalence classes of
T

tempered distributions .

1+6),(1
B((gjfie() Y =lf € Sa gl jaroare < oo]/SaQ

(7—1+e)

One would like to identify an element of B((éffi‘i)“e) with a representative of the equivalence class , and also to define its
T

Fourier-Laplace transform . Again , we claim that this possibility is related with the condition 1+ €<
(1+€)(n_11e)14¢) - This is based on the next proposition .
% :

Proposition (4.2) : Let (fi) ; asequence of functions on V such that B, (§;) ; has spectrum in

and

.86 Il <

(14€)
Then,ifl+e<(1+ e)(g_He)_(He) the series ¥ ;(Xx fi) j converges in S'. Moreover , this property holds for all such

sequencesonly if 1+e < (1+ e)(g_lﬁ),(lﬁ) .

Proof : Let us prove the necessary condition . Assume that ¢ is a smooth function whose Fourier transform has compact
support , and is 1 in a neighborhood of 0 .Since the series };; Zk|((fk) j,<p)| converges for any order which is chosen on
the (§x),'s , it means that Z]-Zk|((fk) jr (p)| converges , with the sun taken for (&, ); in a neighborhood of 0 . If (f}) ; has
spectrum in By, (&); , then this means that :; Zk|((fk) ]-,1/)]-)| converges . Using the action of G we may assume that

_n
Y;is equal to A((Ek),-) "o g, , and take also (fi); = a;fi 0 gr Where (&) is a fixed function whose spectrum is
contained in B/, (e) and such that (fy, ;) is not zero . We take for g, an element of G such that (§); = gxe . Then, we

n(2-€)
have that ¥ ;|a;| < oo whenever ¥ A(&,) ; ~(1+e)-ers |a]-|(1+6) < oo . This implies the inequality

Z Z A(Sk ) _1+€)(2 e /(2- e)+1;((22+62) < 00,

where the sum is taken for (&,); in a neighborhood of O . Using Proposition 2.4 , the fact that this sum is finite is
equivalent to the fact that

2-¢' n(z e n

f A(y)( 1+€) @2-e e) T(2+e) rdy < 0.
YEV |yl<e

This last inequality is valid if and only if (2 — €) < (2 —¢ )( _1ve) )

We refer to [4] for the proof of the fact that , whenever (2 —€) < (2 — e )( “1+e)24e) and v; belongs to S’, then the

i (2+¢€),(2-¢)! - . ) ) )
semi-norm of ¥; in B C(-rve) o f2—e is finite . So the series Z]|((fk)],1p])| is absolutely convergent .

Assume that (2 —¢€) < (2 — ¢ e)( If we use the previous proposition for (f,); = fi * Y;with f, € S5 such

1+e) (2+€)’

that Y ullfell .a+e,a+e) < o0 , we see that Y ; ) i converges in S’ to an element £, which depends only on the
kil g jlkTk * Wj g K p y

(7—1+e

equivalence class of f; . The mapping f;, +— f;defines a mapping from to .
Moreover , it is an injective mapping . To prove this , it is sufficient to prove that fi = 1; = 0 for all whenever f" =0 .
But, then
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DSt =) ) Gl GmN =) S vy B0 =)
J

=D U BG =) =0

In the previous identities , the infinite one because of the finite intersection property , and this allows to pass to the limit .
This means that , below the large critical index , Bé,zfr?fz)_e) indentifies with a space of tempered distributions . One
——1+e€

-

many also define the space of holomorphic functions BE“i(Z) ©) as the Fourier Laplace transform of BE“i(Z) ) Indeed
€ €
T r

2+€),(2— . S .
for fi € B TOWith 2= < @m0 re 0 WE o define Ty Le(f) = BuLi(fE) = Z; B Li(fi
zpj). As before , to prove that this last sum is well defined , itsufficient to prove that , for y € Bé,zl+i(z))_6), the function
——1+e€
whose Fourier transform is exp(—y| -) has a finite semi-norm in B(“E) e

—(——1+e)(2 &) /(2—€
same as the previous one , and it is the case when (2 — ¢€) < (2 —¢ e)( When (2 —e)<(2—¢ e)(

. The computation is nearly the

1+e) (2+e€) * 1+E) (2+e) !’

it makes sense to ask whether B2~ js equal to A%~ This is Problem 3.
(;—14—6) (?—1+E)

4. IN BETWEEN; RESULTS AND OPEN QUESTIONS

We now state the results , and refer to [4] for the proofs . Let us first consider Problem 2 and 3 for Theorem ( 5.1): For

e<o0andforall 0<e< oo, the spaces AEiJre);(j)_e)and Béfi(j)_e) coincide. Moreover , for m a positive integer , the
T

m™ operator is an isomorphism between A% ang A2+ .
(T 1+e) (——1+6)+(2 —e)m

We will only sketch the proof for Problem 2 , to show again the importance of representation formulas . Remember that
(2+€),(2-€)

, Which many be written as
(F-1+€)+@-e)m

m B( 1+6)( W)—CB( 1+E)+m( —w). For F, a function in A

Z Fio(2) = f Z B 1ye) (2= MFW)AUm w) ) dw
k Tq k r
a natural solution of Equation m™ G, = F; is given by
> 6@ = J D By @~ MEW)AUm w)E M
k Ta k r

It remains to see that this makes sense , and gives the only solution ( remember that we have proved the uniqueness ) .In
the next theorem , we state the equivalence between Problem 1,2 and 3.

Theorem (5.2) i Let0<e<wand2<(2—-€)<(2—¢€ . Then there exists an integer m, such that the

)(%—1+6),(2+e)
three properties are equivalent :

1. The projection P(g +) extends into a continuous operator in L((“i)f) 2
r €

2. A holomorphic function F, belongs to AEiJ'i)J‘r(z)_e) if and only if it may be written as £(f), with f € B((f'i(z)'e).
——1+€ ——1+€

3. For some m larger thatm,, , then there existsC such that the Hardy inequality of order |,

holds for all F, € A%

(-1ve)

Moreover , if one of the properties is satisfied , then inequalities of Hardy are valid at all orders.

< Caroi-o ). ICIM W)™ B Fll oo

(2+e) (2—-€) (__1+E)

——1+e)
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We do not know whether m,, can be taken equal to 1, or whether there exists a range for which the Hardy inequality of
order 1 holds , while Hardy inequalities of higher order do not . It follows from this theorem and theorem 1.3 that Problem

1, 2 and 3 have a positive answer in the range [2,2—¢€) . It remains to explore the range 2 -

6)(2—1+e)' 2 - 6)(2—1+e).(2+e)) . The next theorem will give a partial answer . Let us first consider another related
problem , which has its own interest .
Problem 4 :Basov spaces for ; + € =1, and purely Fourier analysis approach . Up to now , we only considered values of

(G-1+¢) for which € > 0 . Such values are related to the weighted Bergman spaces . The case §+ € =1 is related to

Hardy spaces : by this , we mean the Laplace transforms of functions which are in L2(V) are functions of the Hardy space
H?, and conversely .

Once one has a Whitney decomposition of the cone 2 , one may ask whether there is an associated Littlewood-Paley
inequality for functions in L*€ (V) , that is , whether there exists a constant C such that , for (f;,); € L2*9(V),

||(Zj2k|(fk)j *l/)j|2)%

< CZk”(fk)j”

(2+€) (2+e)

By duality , it implies that , for (f;); with spectrain B;(&,); , one has the inequality

(2+e) —

1= ZeFl .. <€ |(z,-2k|<fk),-|2)E

(2+€)’

For € # 2, both Littlewood-Paley inequalities for (2 + ¢) and (2 + €)' cannot be valid in the same time , since the
characteristic function of the cone (2 is not a Fourier multiplier .

We shall in fact consider a different property , which is weaker when € > 0 and s > 2 : the existence of some constant C
such that

(2 Zellh; < vl )* < ClIZhs

Such an inequality can only be valid for s> 2. Indeed , take (fi); with disjoint spectra in B1(§);and X fi =
2

(2+¢€)

Ze]. 2k (fi)j Where the ¢; s are independent +1 given by Rademacher functions . Then , using Khintchine inequalities
and assuming that (5.2) holds , we find that

(2 Zell o), + z/),-llfm)% <C ‘ (ijk|(fk)j|2)%

(2+¢€)

We test last inequality on N functions (f;.) ; with same modulus ( taking translations of the same function on Fourier side )
to find a contradiction if s < 2.

In the other direction , (5.2) is certainly valid for s = max((z +e€),(2+ e)’) , by interpolations between the cases € =
1,e < oo, for which it is a consequence of the fact that the norms of ;in L* are uniformly bounded , and e = 0, for
which it follows from the finite intersection property .

By duality , it is equivalent to the fact that , for a finite sequence of functions (f);whose transforms are supported in
B, (§x) , one has the inequality

We call (C(2+€)I(s’)) this last property . This means in particular that , when (C(2+6)(s)) holds , one has the following
inclusion related to the Basov space for Z+e = 1
1

< c (sl )

(24€) — (2+¢)’

12, Zk |

Problem 4 consists in finding the critical index for (C(2+6)(s)> , between min((z +e),2+ e)’) and 2 . Let us remark

that (C(2+E)(s)) implies , in particular , that infinite sums ¥; ¥, (f;); for which ¥; Zk||(fk)j||f2+e) is finite , converge in
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S’ . This indicates , by Proposition 4.2 that s < (2 — €) 21¢) = (?—_1) .This constraint is only interesting when this

n
_n
r(2+e)’

number is smaller than 2 , that is we answer to Problem 4 when € < 0 : then (2 — €) is the best possible index . For € >
0 , it seems to be a difficult problem , which is related to the other ones as it can be see in the next theorem .

Theorem( 5.3) : If the condition (C(2+E)(s))holds , then Problems 1,2 and 3 have a positive answer for (2 — €) in the

range [2.5(2 - e)(g_lﬂ)) . It is the case , in particular , when s = min((Z +e),2+ e)’) Moreover , this last result is
optimal whene < 1.

Again , we refer to [4] for the proof . The counterexamples are given , as before , by functions of the determinant function
involve powers and logarithms . We also prove there that a necessary condition for a positive answer to Problems 1, 2 and
3 is the existence of a constant C such that ,for all finite sequences of functions (f;);whose Fourier s transforms are
supported are supported in B, (§;) ;, one has the inequality

(2-€)
(2+¢€)

1%, 2157 < €3, 3 A, T 1),

(2+e) —

where the sum is restricted to those (¢;,),'s which are of Euclidean norm less than 1 . An easy consequence of this , using
Khintchine inequalities as before , is the necessary condition (2 —€) < 2(2 — e)(g_1+€)for all (2 + €) : the larger range

is obtained fore =0 .

These result leave a gap , for Problems 1to 3 , as well as for Problem 4 , for ¢ > 0 .It is possible that solving the
problems in the gap is of consider difficulty . Moreover, the sufficient conditions given by Problem 4 and the necessary
conditions (5,3) seem very close, and give a purely Fourier analysis formulation of the different problems . Indeed , work
in progress allows to fill part of the gap when using it for the forward light cone in dimension 3 .

Among other open problems , let us mention the boundedness of the projection P(g_HE) for the limit case € = 0 ( see
[10]) .One does not know whether there is an interval of(2 + €) for which it is bounded in L+
REFERENCES

[1] D .BEKOLLE - A . BONAMI , Estimates for the Bergman and Szego projections in two symmetric domains .
Collog . Math , 68, 1995, 81-100 .

[2] D .BEKOLLE - A . BONAMI , Analysis on tube domains over light cones : some extensions of recent results .
ActesdesRencontres d' Analyse Complexe : Mars 1999 , Univ . Poitiers Ed . Atlantique et ESA CNRS 6086 , 2000 .

[3] D.BEKOLLE-A.BONAMI, -G .GARRIGO'S, Littlewood — Paley decompositions related to symmetric cones .
IMHOTEP , to appear ; available at http : //www . harmonic analysis . org .

[4] D. BEKOLLE - A. BONAMI , - G . GARRIGO'S - F . RICCI , Littlewood — Paley decompositions and Basov
spacesrelated to symmetric cones . Univ . Orleans preprint 2001 ; ; available at http : /Mmww . harmonic analysis .
org.

[5] D..BEKOLLE - A. BONAMI — M. PELOSO -F .RICCI ,Boundedness of weighted Bergman projections on tube
domains over light cones . Math . Z., 237, 2001 , 31-59 .

[6] D. BEKOLLE - A. TEMGOUA KAGOU, Reproducing properties and LP- estimates for Bergman projections in
Siegel domains of type Il . Studia Math ., 115 (3) , 1995, 219-239 .

[71 R.COIFMAN - R. ROCHBERG , Representation theorems for holomorphic functions and harmonic functions in LP.
Asterisque , 77, 1980, 11-66 .

[8] J. FARAUT —-A . KORANYI, Analysis on symmetric cones . Clarendon Press , Oxford 1994
[9] C.EFFERMAN, The multiplier problem for the ball . Ann . of Math ., 94, 1971 , 330 -336 .
[10] G. GARRIGO'S, Generalized Hardy spaces on tube domains over cones . Colloq . Math ., 90,2001 , 213-251 .

[11] E. STEIN, Some problems in harmonic analysis suggested by symmetric spaces and semi- simple Lie groups . Actes
, Congres intern , math., 1, 1970, 173-189.

Page | 13
Research Publish Journals



https://www.researchpublish.com/
https://www.researchpublish.com/

